cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362378 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (j+1)^(n-2*j-1) / (j! * (n-3*j)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 9, 1, 1, 1, 1, 4, 17, 41, 1, 1, 1, 1, 5, 25, 81, 191, 1, 1, 1, 1, 6, 33, 121, 441, 1191, 1, 1, 1, 1, 7, 41, 161, 751, 3641, 9353, 1, 1, 1, 1, 8, 49, 201, 1121, 7351, 33825, 77897, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Examples

			Square array begins:
  1,   1,   1,   1,    1,    1,    1, ...
  1,   1,   1,   1,    1,    1,    1, ...
  1,   1,   1,   1,    1,    1,    1, ...
  1,   2,   3,   4,    5,    6,    7, ...
  1,   9,  17,  25,   33,   41,   49, ...
  1,  41,  81, 121,  161,  201,  241, ...
  1, 191, 441, 751, 1121, 1551, 2041, ...
		

Crossrefs

Columns k=0..3 give A000012, A362381, A362390, A362391.

Programs

  • PARI
    T(n, k) = n! * sum(j=0, n\3, (k/6)^j*(j+1)^(n-2*j-1)/(j!*(n-3*j)!));

Formula

E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^3/6 * A_k(x)).
A_k(x) = exp(x - LambertW(-k*x^3/6 * exp(x))).
A_k(x) = -6 * LambertW(-k*x^3/6 * exp(x))/(k*x^3) for k > 0.

A362477 E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)^3).

Original entry on oeis.org

1, 1, 1, 2, 17, 161, 1351, 12391, 153385, 2388905, 40060781, 708351821, 13861042801, 305141790097, 7339275555067, 188198812659131, 5143808931521681, 150713978752271441, 4718460264313196665, 156524510548008965305, 5474266337362911068161
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=1 of A362490.
Cf. A362381.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3/2*exp(3*x))/3)))

Formula

E.g.f.: exp(x - LambertW(-x^3/2 * exp(3*x))/3) = ( -2 * LambertW(-x^3/2 * exp(3*x))/x^3 )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (1/6)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A386531 E.g.f. A(x) satisfies A(x) = exp(x + x^3/6 * A''(x)).

Original entry on oeis.org

1, 1, 1, 2, 13, 181, 4551, 188021, 11924753, 1103029649, 142906232381, 25095114042461, 5813156139567261, 1736262706526700925, 655797361805578202939, 308047913827328021014851, 177358895717746915172030241, 123578165227603044619210348321
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, (1+j)*sum(k=1, 2, stirling(2, k, 1)*j^k)*binomial(i-1, j)*v[j+1]*v[i-j])/6); v;

Formula

a(0) = 1; a(n) = a(n-1) + (1/6) * Sum_{k=0..n-1} (-k + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).

A362748 E.g.f. satisfies A(x) = exp(x^3/6 + x * A(x)).

Original entry on oeis.org

1, 1, 3, 17, 133, 1386, 18097, 284299, 5225985, 110097836, 2616190831, 69236871309, 2019833025157, 64403044165942, 2228441614038837, 83166830262851591, 3330183199746011713, 142418071427679810936, 6478769455582913796475
Offset: 0

Views

Author

Seiichi Manyama, May 02 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^3/6-lambertw(-x*exp(x^3/6)))))

Formula

E.g.f.: -LambertW(-x * exp(x^3/6)) / x = exp( x^3/6 - LambertW(-x*exp(x^3/6)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k+1)^(n-2*k-1) / (6^k * k! * (n-3*k)!).
Showing 1-4 of 4 results.