A362377
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (j+1)^(n-j-1) / (j! * (n-2*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 1, 1, 1, 4, 13, 34, 1, 1, 1, 5, 19, 85, 216, 1, 1, 1, 6, 25, 154, 701, 1696, 1, 1, 1, 7, 31, 241, 1456, 7261, 15898, 1, 1, 1, 8, 37, 346, 2481, 18136, 89125, 173468, 1, 1, 1, 9, 43, 469, 3776, 35761, 260002, 1277865, 2161036, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 7, 13, 19, 25, 31, 37, ...
1, 34, 85, 154, 241, 346, 469, ...
1, 216, 701, 1456, 2481, 3776, 5341, ...
1, 1696, 7261, 18136, 35761, 61576, 97021, ...
A362392
E.g.f. satisfies A(x) = exp(x + x^3 * A(x)).
Original entry on oeis.org
1, 1, 1, 7, 49, 241, 2041, 26041, 282913, 3449377, 57170161, 973059121, 16847893921, 343341027745, 7680743819113, 175958943331081, 4375517632543681, 118932887426911681, 3374685950589927649, 100735118425384221025, 3217474234925998764481
Offset: 0
A362490
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (3*j+1)^(n-2*j-1) / (j! * (n-3*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 17, 1, 1, 1, 1, 4, 33, 161, 1, 1, 1, 1, 5, 49, 321, 1351, 1, 1, 1, 1, 6, 65, 481, 2841, 12391, 1, 1, 1, 1, 7, 81, 641, 4471, 31641, 153385, 1, 1, 1, 1, 8, 97, 801, 6241, 57751, 498849, 2388905, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 17, 33, 49, 65, 81, 97, ...
1, 161, 321, 481, 641, 801, 961, ...
1, 1351, 2841, 4471, 6241, 8151, 10201, ...
A362381
E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)).
Original entry on oeis.org
1, 1, 1, 2, 9, 41, 191, 1191, 9353, 77897, 704861, 7352621, 85323921, 1058023825, 14155416003, 206100005931, 3217934262481, 53320102598481, 939087824434009, 17562552535939705, 346668611080774081, 7196193133818592961, 156944931623033340711
Offset: 0
A362390
E.g.f. satisfies A(x) = exp(x + x^3/3 * A(x)).
Original entry on oeis.org
1, 1, 1, 3, 17, 81, 441, 3641, 33825, 318753, 3505521, 45095601, 616484001, 9013086369, 145909533225, 2556431401161, 47388760825281, 937507626246081, 19840711661183457, 443937299529447009, 10456231167451597761, 259738234024404363201
Offset: 0
A362391
E.g.f. satisfies A(x) = exp(x + x^3/2 * A(x)).
Original entry on oeis.org
1, 1, 1, 4, 25, 121, 751, 7351, 73417, 749449, 9477181, 136883341, 2041250641, 33289802833, 608025141907, 11815916748091, 242532915013201, 5369303859003601, 126896359555326745, 3153096762426186553, 82705881733348530241, 2293511922269658189121
Offset: 0
Showing 1-6 of 6 results.