A362478
E.g.f. satisfies A(x) = exp(x + x^3/3 * A(x)^3).
Original entry on oeis.org
1, 1, 1, 3, 33, 321, 2841, 31641, 498849, 8979489, 167510961, 3427780401, 80374833441, 2089382321313, 58020408889353, 1721768971537161, 55150870311938241, 1897482353016075201, 69322763655015214689, 2676706914491568918369
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x + x^3/3*A[x]^3] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3*exp(3*x))/3)))
A362472
E.g.f. satisfies A(x) = exp(x + x^3 * A(x)^3).
Original entry on oeis.org
1, 1, 1, 7, 97, 961, 10201, 177241, 3801505, 80718625, 1887205681, 52896262321, 1648697978401, 54216677033377, 1928791931034697, 75326014326206281, 3159713152034201281, 140373558362282197441, 6632746205445950124385, 333591744669464008432225
Offset: 0
A362477
E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)^3).
Original entry on oeis.org
1, 1, 1, 2, 17, 161, 1351, 12391, 153385, 2388905, 40060781, 708351821, 13861042801, 305141790097, 7339275555067, 188198812659131, 5143808931521681, 150713978752271441, 4718460264313196665, 156524510548008965305, 5474266337362911068161
Offset: 0
A362479
E.g.f. satisfies A(x) = exp(x + x^3/2 * A(x)^3).
Original entry on oeis.org
1, 1, 1, 4, 49, 481, 4471, 57751, 1036393, 19939753, 399150541, 9082285741, 237719388721, 6759766432849, 204408880370059, 6672899023062091, 236080878357745681, 8926817568378582481, 357421258163575234873, 15158257732928974255993
Offset: 0
A362483
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 1, 1, 1, 4, 19, 70, 1, 1, 1, 5, 28, 169, 646, 1, 1, 1, 6, 37, 298, 2041, 7576, 1, 1, 1, 7, 46, 457, 4186, 30811, 106744, 1, 1, 1, 8, 55, 646, 7081, 74116, 560827, 1761628, 1, 1, 1, 9, 64, 865, 10726, 141901, 1578340, 11957905, 33361948, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 10, 19, 28, 37, 46, ...
1, 70, 169, 298, 457, 646, ...
1, 646, 2041, 4186, 7081, 10726, ...
Showing 1-5 of 5 results.