cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362474 E.g.f. satisfies A(x) = exp(x + x^2/2 * A(x)^2).

Original entry on oeis.org

1, 1, 2, 10, 70, 646, 7576, 106744, 1761628, 33361948, 712950616, 16976294776, 445751093800, 12795850109992, 398697898011232, 13401365473319776, 483376669737381136, 18623161719254837008, 763300232417720682784, 33163224556779213475744
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=1 of A362483.

Programs

  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[x + x^2/2*A[x]^2] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^2*exp(2*x))/2)))

Formula

E.g.f.: exp(x - LambertW(-x^2 * exp(2*x))/2) = sqrt(-LambertW(-x^2*exp(2*x))/x^2).
a(n) = n! * Sum_{k=0..floor(n/2)} (1/2)^k * (2*k+1)^(n-k-1) / (k! * (n-2*k)!).
a(n) ~ sqrt(1 + LambertW(exp(-1/2))) * n^(n-1) / (sqrt(2) * exp(n) * LambertW(exp(-1/2))^(n+1)). - Vaclav Kotesovec, Nov 10 2023

A362475 E.g.f. satisfies A(x) = exp(x + 3*x^2/2 * A(x)^2).

Original entry on oeis.org

1, 1, 4, 28, 298, 4186, 74116, 1578340, 39394972, 1127378332, 36411516496, 1310173698736, 51982859674648, 2254757407407064, 106150698182657584, 5390926011965379376, 293782337188718257936, 17100576708082841577232, 1058920120014192744673600
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=3 of A362483.
Cf. A362380.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^2*exp(2*x))/2)))

Formula

E.g.f.: exp(x - LambertW(-3*x^2 * exp(2*x))/2) = sqrt( -LambertW(-3*x^2 * exp(2*x))/(3*x^2) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (3/2)^k * (2*k+1)^(n-k-1) / (k! * (n-2*k)!).
Showing 1-2 of 2 results.