cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A362478 E.g.f. satisfies A(x) = exp(x + x^3/3 * A(x)^3).

Original entry on oeis.org

1, 1, 1, 3, 33, 321, 2841, 31641, 498849, 8979489, 167510961, 3427780401, 80374833441, 2089382321313, 58020408889353, 1721768971537161, 55150870311938241, 1897482353016075201, 69322763655015214689, 2676706914491568918369
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=2 of A362490.
Cf. A362390.

Programs

  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[x + x^3/3*A[x]^3] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3*exp(3*x))/3)))

Formula

E.g.f.: exp(x - LambertW(-x^3 * exp(3*x))/3) = ( -LambertW(-x^3 * exp(3*x))/x^3 )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (1/3)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A362491 E.g.f. satisfies A(x) = exp(x + x^4/4 * A(x)^4).

Original entry on oeis.org

1, 1, 1, 1, 7, 151, 2251, 26251, 273841, 3281041, 61021801, 1518719401, 38199828151, 905801252071, 21398411003971, 560160675014851, 17260034904184801, 596005144436100001, 21359751419836426321, 773082506262449261521, 28839945213850125032551
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^4*exp(4*x))/4)))

Formula

E.g.f.: exp(x - LambertW(-x^4 * exp(4*x))/4) = ( -LambertW(-x^4 * exp(4*x))/x^4 )^(1/4).
a(n) = n! * Sum_{k=0..floor(n/4)} (1/4)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).

A365054 E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^2 ).

Original entry on oeis.org

1, 1, 6, 64, 1038, 22666, 624448, 20801628, 813473468, 36543076444, 1854702411336, 104970490358944, 6555275229438664, 447773277245296536, 33211911279540910400, 2658266282912883209296, 228375288313274403201552, 20961681963345040127314192
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*(1+x/2))/2)))

Formula

E.g.f.: exp( -LambertW(-2*x * (1+x/2))/2 ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (2*k+1)^(k-1) * binomial(k,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: sqrt(-LambertW(-2*x * (1+x/2)) / (2*x * (1+x/2))).
a(n) ~ sqrt((-sqrt(1 + exp(-1)) + 1 + exp(-1))/2) * n^(n-1) / (exp(n-1) * (-1 + sqrt(1 + exp(-1)))^n). (End)

A362475 E.g.f. satisfies A(x) = exp(x + 3*x^2/2 * A(x)^2).

Original entry on oeis.org

1, 1, 4, 28, 298, 4186, 74116, 1578340, 39394972, 1127378332, 36411516496, 1310173698736, 51982859674648, 2254757407407064, 106150698182657584, 5390926011965379376, 293782337188718257936, 17100576708082841577232, 1058920120014192744673600
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=3 of A362483.
Cf. A362380.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^2*exp(2*x))/2)))

Formula

E.g.f.: exp(x - LambertW(-3*x^2 * exp(2*x))/2) = sqrt( -LambertW(-3*x^2 * exp(2*x))/(3*x^2) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (3/2)^k * (2*k+1)^(n-k-1) / (k! * (n-2*k)!).

A362483 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 1, 1, 1, 4, 19, 70, 1, 1, 1, 5, 28, 169, 646, 1, 1, 1, 6, 37, 298, 2041, 7576, 1, 1, 1, 7, 46, 457, 4186, 30811, 106744, 1, 1, 1, 8, 55, 646, 7081, 74116, 560827, 1761628, 1, 1, 1, 9, 64, 865, 10726, 141901, 1578340, 11957905, 33361948, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,    1,     1, ...
  1,   1,    1,    1,    1,     1, ...
  1,   2,    3,    4,    5,     6, ...
  1,  10,   19,   28,   37,    46, ...
  1,  70,  169,  298,  457,   646, ...
  1, 646, 2041, 4186, 7081, 10726, ...
		

Crossrefs

Columns k=0..3 give A000012, A362474, A143768, A362475.

Programs

  • PARI
    T(n, k) = n! * sum(j=0, n\2, (k/2)^j*(2*j+1)^(n-j-1)/(j!*(n-2*j)!));

Formula

E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^2/2 * A_k(x)^2).
A_k(x) = exp(x - LambertW(-k*x^2 * exp(2*x))/2).
A_k(x) = sqrt( -LambertW(-k*x^2 * exp(2*x))/(k*x^2) ) for k > 0.
Showing 1-5 of 5 results.