cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365053 E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x) ).

Original entry on oeis.org

1, 1, 4, 25, 230, 2786, 42112, 764296, 16209916, 393678856, 10777609556, 328466815964, 11031378197776, 404830360798072, 16118917055902312, 692126238230304616, 31882272572881781648, 1568365865590875789824, 82061348851406564851312
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x/2)))))

Formula

E.g.f.: exp( -LambertW(-x * (1+x/2)) ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (k+1)^(k-1) * binomial(k,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: -LambertW(-x * (1+x/2)) / (x * (1+x/2)).
a(n) ~ sqrt(-sqrt(1 + 2*exp(-1)) + 1 + 2*exp(-1)) * n^(n-1) / (exp(n - 3/2) * (-1 + sqrt(1 + 2*exp(-1)))^n). (End)

A365055 E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^3 ).

Original entry on oeis.org

1, 1, 8, 121, 2818, 89006, 3559504, 172489948, 9825889532, 643567980808, 47654835126436, 3936868360416476, 358990055621209984, 35816155847478234424, 3880967272702222156952, 453886307361640406266456, 56985342864303337121933584, 7644651551838264804179619200
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x*(1+x/2))/3)))

Formula

E.g.f.: exp( -LambertW(-3*x * (1+x/2))/3 ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (3*k+1)^(k-1) * binomial(k,n-k)/k!.

A365056 E.g.f. satisfies A(x) = exp( x * (1+x/2)/A(x) ).

Original entry on oeis.org

1, 1, 0, 1, -6, 46, -440, 5076, -68740, 1070056, -18835164, 369994780, -8025080096, 190501729848, -4912802070280, 136775150153656, -4088669684755440, 130620500241909376, -4441243727496127184, 160132524268963159440, -6102784264210449418144
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x*(1+x/2)))))

Formula

E.g.f.: exp( LambertW(x * (1+x/2)) ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (-k+1)^(k-1) * binomial(k,n-k)/k!.
Showing 1-3 of 3 results.