cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365053 E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x) ).

Original entry on oeis.org

1, 1, 4, 25, 230, 2786, 42112, 764296, 16209916, 393678856, 10777609556, 328466815964, 11031378197776, 404830360798072, 16118917055902312, 692126238230304616, 31882272572881781648, 1568365865590875789824, 82061348851406564851312
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x/2)))))

Formula

E.g.f.: exp( -LambertW(-x * (1+x/2)) ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (k+1)^(k-1) * binomial(k,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: -LambertW(-x * (1+x/2)) / (x * (1+x/2)).
a(n) ~ sqrt(-sqrt(1 + 2*exp(-1)) + 1 + 2*exp(-1)) * n^(n-1) / (exp(n - 3/2) * (-1 + sqrt(1 + 2*exp(-1)))^n). (End)

A365054 E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^2 ).

Original entry on oeis.org

1, 1, 6, 64, 1038, 22666, 624448, 20801628, 813473468, 36543076444, 1854702411336, 104970490358944, 6555275229438664, 447773277245296536, 33211911279540910400, 2658266282912883209296, 228375288313274403201552, 20961681963345040127314192
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*(1+x/2))/2)))

Formula

E.g.f.: exp( -LambertW(-2*x * (1+x/2))/2 ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (2*k+1)^(k-1) * binomial(k,n-k)/k!.
From Vaclav Kotesovec, Nov 10 2023: (Start)
E.g.f.: sqrt(-LambertW(-2*x * (1+x/2)) / (2*x * (1+x/2))).
a(n) ~ sqrt((-sqrt(1 + exp(-1)) + 1 + exp(-1))/2) * n^(n-1) / (exp(n-1) * (-1 + sqrt(1 + exp(-1)))^n). (End)

A365055 E.g.f. satisfies A(x) = exp( x * (1+x/2) * A(x)^3 ).

Original entry on oeis.org

1, 1, 8, 121, 2818, 89006, 3559504, 172489948, 9825889532, 643567980808, 47654835126436, 3936868360416476, 358990055621209984, 35816155847478234424, 3880967272702222156952, 453886307361640406266456, 56985342864303337121933584, 7644651551838264804179619200
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x*(1+x/2))/3)))

Formula

E.g.f.: exp( -LambertW(-3*x * (1+x/2))/3 ).
a(n) = n! * Sum_{k=0..n} (1/2)^(n-k) * (3*k+1)^(k-1) * binomial(k,n-k)/k!.
Showing 1-3 of 3 results.