cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362378 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (j+1)^(n-2*j-1) / (j! * (n-3*j)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 9, 1, 1, 1, 1, 4, 17, 41, 1, 1, 1, 1, 5, 25, 81, 191, 1, 1, 1, 1, 6, 33, 121, 441, 1191, 1, 1, 1, 1, 7, 41, 161, 751, 3641, 9353, 1, 1, 1, 1, 8, 49, 201, 1121, 7351, 33825, 77897, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Examples

			Square array begins:
  1,   1,   1,   1,    1,    1,    1, ...
  1,   1,   1,   1,    1,    1,    1, ...
  1,   1,   1,   1,    1,    1,    1, ...
  1,   2,   3,   4,    5,    6,    7, ...
  1,   9,  17,  25,   33,   41,   49, ...
  1,  41,  81, 121,  161,  201,  241, ...
  1, 191, 441, 751, 1121, 1551, 2041, ...
		

Crossrefs

Columns k=0..3 give A000012, A362381, A362390, A362391.

Programs

  • PARI
    T(n, k) = n! * sum(j=0, n\3, (k/6)^j*(j+1)^(n-2*j-1)/(j!*(n-3*j)!));

Formula

E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^3/6 * A_k(x)).
A_k(x) = exp(x - LambertW(-k*x^3/6 * exp(x))).
A_k(x) = -6 * LambertW(-k*x^3/6 * exp(x))/(k*x^3) for k > 0.

A362478 E.g.f. satisfies A(x) = exp(x + x^3/3 * A(x)^3).

Original entry on oeis.org

1, 1, 1, 3, 33, 321, 2841, 31641, 498849, 8979489, 167510961, 3427780401, 80374833441, 2089382321313, 58020408889353, 1721768971537161, 55150870311938241, 1897482353016075201, 69322763655015214689, 2676706914491568918369
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=2 of A362490.
Cf. A362390.

Programs

  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[x + x^3/3*A[x]^3] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3*exp(3*x))/3)))

Formula

E.g.f.: exp(x - LambertW(-x^3 * exp(3*x))/3) = ( -LambertW(-x^3 * exp(3*x))/x^3 )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (1/3)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
Showing 1-2 of 2 results.