A125500
Expansion of -LambertW(-x^2*exp(x))/x^2.
Original entry on oeis.org
1, 1, 3, 13, 85, 701, 7261, 89125, 1277865, 20883385, 384194521, 7852225481, 176651705869, 4337650936789, 115468033349397, 3312409332578221, 101881034223806161, 3344745711740899697, 116747433680684736817
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! +... - _Paul D. Hanna_, Aug 30 2008
-
List([0..30],n->Sum([0..n],k->Factorial(n)*(n-k+1)^(k-1)/Factorial(k)*Binomial(k,n-k))); # Muniru A Asiru, Feb 19 2018
-
Table[Sum[n!*(n-k+1)^(k-1)/k!*Binomial[k,n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 04 2013 *)
With[{nmax=30}, CoefficientList[Series[-LambertW[-x^2*Exp[x]]/x^2, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Feb 19 2018 *)
-
{a(n)=local(Ex=exp(x+x*O(x^n)),W=Ex);for(k=0,n,W=exp(x*W)); n!*polcoeff(subst(W,x,x^2*Ex)*Ex,n)} \\ Paul D. Hanna, Jan 02 2007
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=exp(x+x^2*A));n!*polcoeff(A,n)} \\ Paul D. Hanna, Aug 30 2008
-
{a(n,m=1)=if(n==0,1,sum(k=0,n,n!/k!*m*(n-k+m)^(k-1)*binomial(k,n-k)))} \\ Paul D. Hanna, Jun 17 2009
-
{a(n,m=1)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(x*(1+x*A)));n!*polcoeff(A^m,n)} \\ Paul D. Hanna, Jun 17 2009
-
x='x+O('x^30); Vec(serlaplace(-lambertw(-x^2*exp(x))/x^2)) \\ G. C. Greubel, Feb 19 2018
A362378
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * (j+1)^(n-2*j-1) / (j! * (n-3*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 9, 1, 1, 1, 1, 4, 17, 41, 1, 1, 1, 1, 5, 25, 81, 191, 1, 1, 1, 1, 6, 33, 121, 441, 1191, 1, 1, 1, 1, 7, 41, 161, 751, 3641, 9353, 1, 1, 1, 1, 8, 49, 201, 1121, 7351, 33825, 77897, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 9, 17, 25, 33, 41, 49, ...
1, 41, 81, 121, 161, 201, 241, ...
1, 191, 441, 751, 1121, 1551, 2041, ...
A143740
E.g.f. satisfies A(x) = exp(x + x^2/2 * A(x)).
Original entry on oeis.org
1, 1, 2, 7, 34, 216, 1696, 15898, 173468, 2161036, 30282076, 471599316, 8082816160, 151218316120, 3066890630168, 67031194526416, 1570793031033616, 39290173530686544, 1044871388684004304, 29440090627527552976
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 34*x^4/4! + 216*x^5/5! + ...
-
CoefficientList[Series[-2*LambertW[-x^2*E^x/2]/x^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
-
a[n]:=(if n<2 then 1 else a[n-1]+sum((n-1)*(n-k)*binomial(n-2,k)*a[k]*a[n-2-k],k,0,n-2)/2);
makelist(a[n],n,0,100); /* Tani Akinari, Nov 01 2017 */
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=exp(x+x^2*A/2));(n+0)!*polcoeff(A,n)}
-
{a(n)=local(A=sum(m=0,n,(m+1)^(m-1)*(x^2/2)^m*exp((m+1)*x+x*O(x^n))/m!)); n!*polcoeff(A,n)}
-
{a(n)=local(Ex=exp(x+x*O(x^n)),W=Ex);for(k=0,n,W=exp(x*W)); n!*polcoeff(subst(W,x,x^2*Ex/2)*Ex,n)}
A362380
E.g.f. satisfies A(x) = exp(x + 3*x^2/2 * A(x)).
Original entry on oeis.org
1, 1, 4, 19, 154, 1456, 18136, 260002, 4430812, 85170988, 1854422236, 44693165716, 1188169271488, 34434053438968, 1082632555160248, 36666259172292016, 1331754793762045456, 51622725829298301520, 2127683533625205288400
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x + 3*x^2/2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^2/2*exp(x)))))
A362394
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * (j+1)^(n-j-1) / (j! * (n-2*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -5, 1, 1, 1, -2, -11, -14, 1, 1, 1, -3, -17, -11, 56, 1, 1, 1, -4, -23, 10, 381, 736, 1, 1, 1, -5, -29, 49, 976, 2461, 1114, 1, 1, 1, -6, -35, 106, 1841, 3736, -21083, -45156, 1, 1, 1, -7, -41, 181, 2976, 3121, -106910, -449623, -428660, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -5, -11, -17, -23, -29, -35, ...
1, -14, -11, 10, 49, 106, 181, ...
1, 56, 381, 976, 1841, 2976, 4381, ...
1, 736, 2461, 3736, 3121, -824, -9539, ...
A362483
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 1, 1, 1, 4, 19, 70, 1, 1, 1, 5, 28, 169, 646, 1, 1, 1, 6, 37, 298, 2041, 7576, 1, 1, 1, 7, 46, 457, 4186, 30811, 106744, 1, 1, 1, 8, 55, 646, 7081, 74116, 560827, 1761628, 1, 1, 1, 9, 64, 865, 10726, 141901, 1578340, 11957905, 33361948, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 10, 19, 28, 37, 46, ...
1, 70, 169, 298, 457, 646, ...
1, 646, 2041, 4186, 7081, 10726, ...
Showing 1-6 of 6 results.