A323293 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have two vertices in common.
1, 1, 1, 2, 5, 26, 271, 5596, 231577, 21286940, 4392750641, 2100400533176
Offset: 0
Examples
The a(5) = 26 hypergraphs: {} {{1,2,3}} {{1,2,4}} {{1,2,5}} {{1,3,4}} {{1,3,5}} {{1,4,5}} {{2,3,4}} {{2,3,5}} {{2,4,5}} {{3,4,5}} {{1,2,3},{1,4,5}} {{1,2,3},{2,4,5}} {{1,2,3},{3,4,5}} {{1,2,4},{1,3,5}} {{1,2,4},{2,3,5}} {{1,2,4},{3,4,5}} {{1,2,5},{1,3,4}} {{1,2,5},{2,3,4}} {{1,2,5},{3,4,5}} {{1,3,4},{2,3,5}} {{1,3,4},{2,4,5}} {{1,3,5},{2,3,4}} {{1,3,5},{2,4,5}} {{1,4,5},{2,3,4}} {{1,4,5},{2,3,5}} Non-isomorphic representatives of the 6 unlabeled 3-uniform hypertrees spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 271: 1 X {} 20 X {{1,2,3}} 90 X {{1,2,5},{3,4,5}} 10 X {{1,2,3},{4,5,6}} 120 X {{1,3,5},{2,3,6},{4,5,6}} 30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>1&]],{n,8}]
Extensions
a(9) from Andrew Howroyd, Aug 14 2019
a(10) and a(11) (using A287232) from Joerg Arndt, Oct 12 2023
Comments