cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A289837 Number of cliques in the n-tetrahedral graph.

Original entry on oeis.org

1, 1, 2, 16, 76, 261, 757, 2003, 5035, 12286, 29426, 69554, 162670, 376923, 865971, 1973941, 4466853, 10040524, 22430584, 49829116, 110127536, 242254321, 530619937, 1157676711, 2516640751, 5452664426, 11777687182, 25367246038, 54492508610, 116769551831
Offset: 1

Views

Author

Eric W. Weisstein, Jul 13 2017

Keywords

Comments

Here, "cliques" means complete subgraphs (not necessarily the largest).
Sequence extended to a(1) using formula. - Andrew Howroyd, Jul 18 2017
From Gus Wiseman, Jan 11 2019: (Start)
The n-tetrahedral graph has all 3-subsets of {1,...,n} as vertices, and two are connected iff they share two elements. So a(n) is the number of 3-uniform hypergraphs on n labeled vertices where every two edges have two vertices in common. For example, the a(4) = 16 hypergraphs are:
{}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3},{1,2,4}}
{{1,2,3},{1,3,4}}
{{1,2,3},{2,3,4}}
{{1,2,4},{1,3,4}}
{{1,2,4},{2,3,4}}
{{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4}}
{{1,2,3},{1,2,4},{2,3,4}}
{{1,2,3},{1,3,4},{2,3,4}}
{{1,2,4},{1,3,4},{2,3,4}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 7 unlabeled 3-uniform cliques on 6 vertices, and their multiplicities in the labeled case, which add up to a(6) = 261.
1 X {}
20 X {{1,2,3}}
90 X {{1,3,4},{2,3,4}}
60 X {{1,4,5},{2,4,5},{3,4,5}}
60 X {{1,2,4},{1,3,4},{2,3,4}}
15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
(End)

Crossrefs

Cf. A055795 (maximal cliques), A287232 (independent vertex sets), A290056 (triangular graph).

Programs

  • Mathematica
    Table[(2^(n - 2) - n + 1) Binomial[n, 2] + Binomial[n, 3] +
      5 Binomial[n, 4] + 1, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *)
    LinearRecurrence[{11, -52, 138, -225, 231, -146, 52, -8}, {1, 1, 2, 16, 76, 261, 757, 2003}, 20] (* Eric W. Weisstein, Jul 21 2017 *)
    CoefficientList[Series[(1 - 10 x + 43 x^2 - 92 x^3 + 91 x^4 - 25 x^5 - 5 x^6 - 8 x^7)/((-1 + x)^5 (-1 + 2 x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 21 2017 *)
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&]],{n,6}] (* Gus Wiseman, Jan 11 2019 *)
  • PARI
    a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4); \\ Andrew Howroyd, Jul 18 2017
    
  • PARI
    Vec(x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Jul 19 2017

Formula

a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4). - Andrew Howroyd, Jul 18 2017
a(n) = 11*a(n-1)-52*a(n-2)+138*a(n-3)-225*a(n-4)+231*a(n-5)-146*a(n-6)+52*a(n-7)-8*a(n-8). - Eric W. Weisstein, Jul 21 2017
From Colin Barker, Jul 19 2017: (Start)
G.f.: x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3).
a(n) = (24 - (34+3*2^n)*n + (67+3*2^n)*n^2 - 38*n^3 + 5*n^4) / 24.
(End)
Binomial transform of A323294. - Gus Wiseman, Jan 11 2019

Extensions

a(1)-a(5) and a(21)-a(30) from Andrew Howroyd, Jul 18 2017

A323296 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 25, 406, 4823, 15436, 72915, 895180, 11320441, 71777498, 519354927, 6155284240, 82292879425, 788821735656, 7772567489083, 98329764933354, 1400924444610675, 17424772471470490, 216091776292721021, 3035845122991962688, 46700545575567202903
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to meet the requirements is to cover the vertices with zero or more disconnected 3-uniform hypergraphs with each edge having exactly two vertices in common (A323294). - Andrew Howroyd, Aug 18 2019

Examples

			The a(4) = 11:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 7 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 406.
  210 X {{1,2,3},{4,6,7},{5,6,7}}
  140 X {{1,2,3},{4,5,7},{4,6,7},{5,6,7}}
   21 X {{1,6,7},{2,6,7},{3,6,7},{4,6,7},{5,6,7}}
   35 X {{1,2,3},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
		

Crossrefs

Programs

  • Maple
    b:= n-> `if`(n<5, (n-2)*(2*n^2-6*n+3)/6, n/2)*(n-1):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, k-1)*b(k)*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&],Union@@#==Range[n]&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

From Andrew Howroyd, Aug 18 2019: (Start)
Exponential transform of A323294.
E.g.f.: exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). (End)

Extensions

a(11) from Alois P. Heinz, Aug 12 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A323297 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 16, 76, 271, 1212, 10158, 78290, 503231, 3495966, 33016534, 327625520, 3000119669, 28185006956, 308636238516, 3631959615948, 42031903439809, 493129893459310, 6264992355842706, 84639308481270656, 1159506969481515271, 16131054826385628592
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(4) = 16 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,3,4}}
  {{2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 8 unlabeled 3-uniform hypergraphs on 6 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 271:
   1 X {}
  20 X {{1,2,3}}
  90 X {{1,3,4},{2,3,4}}
  10 X {{1,2,3},{4,5,6}}
  60 X {{1,4,5},{2,4,5},{3,4,5}}
  60 X {{1,2,4},{1,3,4},{2,3,4}}
  15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
  15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

Binomial transform of A323296.
E.g.f.: exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). - Andrew Howroyd, Aug 18 2019

Extensions

a(10)-a(11) from Alois P. Heinz, Aug 11 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019
Showing 1-3 of 3 results.