A323296 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have exactly one vertex in common.
1, 0, 0, 1, 11, 10, 25, 406, 4823, 15436, 72915, 895180, 11320441, 71777498, 519354927, 6155284240, 82292879425, 788821735656, 7772567489083, 98329764933354, 1400924444610675, 17424772471470490, 216091776292721021, 3035845122991962688, 46700545575567202903
Offset: 0
Keywords
Examples
The a(4) = 11: {{1,2,3},{1,2,4}} {{1,2,3},{1,3,4}} {{1,2,3},{2,3,4}} {{1,2,4},{1,3,4}} {{1,2,4},{2,3,4}} {{1,3,4},{2,3,4}} {{1,2,3},{1,2,4},{1,3,4}} {{1,2,3},{1,2,4},{2,3,4}} {{1,2,3},{1,3,4},{2,3,4}} {{1,2,4},{1,3,4},{2,3,4}} {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} The following are non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 7 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 406. 210 X {{1,2,3},{4,6,7},{5,6,7}} 140 X {{1,2,3},{4,5,7},{4,6,7},{5,6,7}} 21 X {{1,6,7},{2,6,7},{3,6,7},{4,6,7},{5,6,7}} 35 X {{1,2,3},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
b:= n-> `if`(n<5, (n-2)*(2*n^2-6*n+3)/6, n/2)*(n-1): a:= proc(n) option remember; `if`(n=0, 1, add( binomial(n-1, k-1)*b(k)*a(n-k), k=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Aug 18 2019
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&],Union@@#==Range[n]&]],{n,8}]
-
PARI
seq(n)={Vec(serlaplace(exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019
Formula
From Andrew Howroyd, Aug 18 2019: (Start)
Exponential transform of A323294.
E.g.f.: exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). (End)
Extensions
a(11) from Alois P. Heinz, Aug 12 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019
Comments