cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351930 Expansion of e.g.f. exp(x - x^4/24).

Original entry on oeis.org

1, 1, 1, 1, 0, -4, -14, -34, -34, 190, 1366, 5446, 11056, -30744, -421420, -2403764, -7434244, 9782396, 296347996, 2257819420, 9461601856, -1690329584, -395833164264, -3872875071064, -20629371958040, -17208144880024, 893208132927176, 10962683317693576
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         `if`(n<4, 0, -a(n-4)*binomial(n-1, 3))+a(n-1))
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, Feb 26 2022
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^4/4!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (-1/4!)^k*binomial(n-3*k, k)/(n-3*k)!);
    
  • PARI
    a(n) = if(n<4, 1, a(n-1)-binomial(n-1, 3)*a(n-4));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (-1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
D-finite with recurrence a(n) = a(n-1) - binomial(n-1,3) * a(n-4) for n > 3.

A362317 a(n) = n! * Sum_{k=0..floor(n/4)} (n/24)^k /(k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 5, 26, 91, 246, 2801, 26650, 159601, 702406, 12479941, 172561676, 1462655195, 8918930476, 215370384321, 3906667179836, 42828875064001, 333816101642140, 10190496077676901, 228789539391769336, 3077152545301687931, 29203537040556576776
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[PowerExpand[Series[E^((-6*LambertW[-x^4/6])^(1/4)) / (1 + LambertW[-x^4/6]), {x, 0, nmax}]], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 18 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-6*lambertw(-x^4/6))^(1/4))/(1+lambertw(-x^4/6))))

Formula

a(n) = n! * [x^n] exp(x + n*x^4/24).
E.g.f.: exp( ( -6*LambertW(-x^4/6) )^(1/4) ) / (1 + LambertW(-x^4/6)).
Showing 1-2 of 2 results.