cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A351929 Expansion of e.g.f. exp(x - x^3/6).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -9, 36, 225, 477, -819, -10944, -37179, 16875, 870507, 4253796, 2481921, -101978919, -680495175, -1060229088, 16378166061, 145672249311, 368320357791, -3415036002300, -40270115077983, -141926533828299, 882584266861701, 13970371667206176
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 27; Range[0, m]! * CoefficientList[Series[Exp[x - x^3/6], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^3/6)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1/3!)^k*binomial(n-2*k, k)/(n-2*k)!);
    
  • PARI
    a(n) = if(n<3, 1, a(n-1)-binomial(n-1, 2)*a(n-3));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-1/6)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - binomial(n-1,2) * a(n-3) for n > 2.

A351931 Expansion of e.g.f. exp(x - x^5/120).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -125, 925, 7525, 34750, 124125, 249250, -1013375, -14708875, -97413875, -477236375, -1443329375, 3466472500, 91499089375, 804081585000, 5030009685625, 20366827624375, -23484049500625, -1391395435656875, -15503027252406875
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 28; Range[0, m]! * CoefficientList[Series[Exp[x - x^5/5!], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^5/5!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\5, (-1/5!)^k*binomial(n-4*k, k)/(n-4*k)!);
    
  • PARI
    a(n) = if(n<5, 1, a(n-1)-binomial(n-1, 4)*a(n-5));

Formula

a(n) = n! * Sum_{k=0..floor(n/5)} (-1/5!)^k * binomial(n-4*k,k)/(n-4*k)!.
a(n) = a(n-1) - binomial(n-1,4) * a(n-5) for n > 4.

A351932 Number of set partitions of [n] such that block sizes are either 1 or 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 106, 442, 1786, 6106, 23596, 120836, 631632, 2854216, 13590396, 81258556, 510768316, 2839808572, 16008902296, 108643656136, 787965516416, 5161270717296, 33513036683512, 253407796702776, 2065728484459576, 15485032349429176, 113510664648701776
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         `if`(n<4, 0, a(n-4)*binomial(n-1, 3))+a(n-1))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Feb 26 2022
    seq(round(evalf(hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3))),n=0..28);  # Karol A. Penson, Jul 28 2023
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x+x^4/4!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, 1/4!^k*binomial(n-3*k, k)/(n-3*k)!);
    
  • PARI
    a(n) = if(n<4, 1, a(n-1)+binomial(n-1, 3)*a(n-4));

Formula

E.g.f.: exp(x + x^4/24).
a(n) = n! * Sum_{k=0..floor(n/4)} (1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
a(n) = a(n-1) + binomial(n-1,3) * a(n-4) for n > 3.
a(n) = hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3), Karol A. Penson, Jul 28 2023.

A362342 a(n) = n! * Sum_{k=0..floor(n/4)} (-k/24)^k / (k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 0, -4, -14, -34, 71, 1135, 6091, 22771, -87119, -1847559, -13769755, -70046339, 390688481, 10473961121, 100030347361, 643972996705, -4717305354419, -153449916040259, -1787926183752939, -13926752488607419, 126329848106764765
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(x^4/24))))

Formula

E.g.f.: exp(x) / (1 + LambertW(x^4/24)).

A362345 a(n) = n! * Sum_{k=0..floor(n/4)} (-n/24)^k /(k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, -3, -24, -89, -244, 1681, 24382, 155401, 695146, -7490339, -157336464, -1421454033, -8817579224, 129268310081, 3555528110716, 41578411339441, 329824291072252, -6116622750516899, -207991913454970784, -2985298421745508329
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((6*lambertw(x^4/6))^(1/4))/(1+lambertw(x^4/6))))

Formula

a(n) = n! * [x^n] exp(x - n*x^4/24).
E.g.f.: exp( ( 6*LambertW(x^4/6) )^(1/4) ) / (1 + LambertW(x^4/6)).
Showing 1-5 of 5 results.