cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351930 Expansion of e.g.f. exp(x - x^4/24).

Original entry on oeis.org

1, 1, 1, 1, 0, -4, -14, -34, -34, 190, 1366, 5446, 11056, -30744, -421420, -2403764, -7434244, 9782396, 296347996, 2257819420, 9461601856, -1690329584, -395833164264, -3872875071064, -20629371958040, -17208144880024, 893208132927176, 10962683317693576
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         `if`(n<4, 0, -a(n-4)*binomial(n-1, 3))+a(n-1))
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, Feb 26 2022
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^4/4!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (-1/4!)^k*binomial(n-3*k, k)/(n-3*k)!);
    
  • PARI
    a(n) = if(n<4, 1, a(n-1)-binomial(n-1, 3)*a(n-4));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (-1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
D-finite with recurrence a(n) = a(n-1) - binomial(n-1,3) * a(n-4) for n > 3.

A351929 Expansion of e.g.f. exp(x - x^3/6).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -9, 36, 225, 477, -819, -10944, -37179, 16875, 870507, 4253796, 2481921, -101978919, -680495175, -1060229088, 16378166061, 145672249311, 368320357791, -3415036002300, -40270115077983, -141926533828299, 882584266861701, 13970371667206176
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 27; Range[0, m]! * CoefficientList[Series[Exp[x - x^3/6], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^3/6)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1/3!)^k*binomial(n-2*k, k)/(n-2*k)!);
    
  • PARI
    a(n) = if(n<3, 1, a(n-1)-binomial(n-1, 2)*a(n-3));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-1/6)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - binomial(n-1,2) * a(n-3) for n > 2.

A362346 a(n) = n! * Sum_{k=0..floor(n/5)} (-n/120)^k /(k! * (n-5*k)!).

Original entry on oeis.org

1, 1, 1, 1, 1, -4, -35, -146, -447, -1133, 10081, 162625, 1188001, 6073354, 24692669, -340585244, -8007557375, -83565282891, -598436312543, -3348919070207, 62583951520321, 1933207863670000, 26224985071994941, 241528060568764586, 1721188205642283841
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((24*lambertw(x^5/24))^(1/5))/(1+lambertw(x^5/24))))

Formula

a(n) = n! * [x^n] exp(x - n*x^5/120).
E.g.f.: exp( ( 24*LambertW(x^5/24) )^(1/5) ) / (1 + LambertW(x^5/24)).
Showing 1-3 of 3 results.