cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275431 Triangle read by rows: T(n,k) = number of ways to insert n pairs of parentheses in k words.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 14, 8, 2, 1, 42, 24, 8, 2, 1, 132, 85, 28, 8, 2, 1, 429, 286, 100, 28, 8, 2, 1, 1430, 1008, 358, 105, 28, 8, 2, 1, 4862, 3536, 1309, 378, 105, 28, 8, 2, 1, 16796, 12618, 4772, 1410, 384, 105, 28, 8, 2, 1, 58786, 45220, 17556, 5220, 1435, 384, 105, 28, 8, 2, 1
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

Multiset transformation of A000108. Each word is dissected by a number of parentheses associated to its length.
Also the number of forests of exactly k (unlabeled) ordered rooted trees with a total of n non-root nodes where each tree has at least 1 non-root node. - Alois P. Heinz, Sep 20 2017

Examples

			       1
       2     1
       5     2     1
      14     8     2     1
      42    24     8     2     1
     132    85    28     8     2     1
     429   286   100    28     8     2     1
    1430  1008   358   105    28     8     2     1
    4862  3536  1309   378   105    28     8     2     1
   16796 12618  4772  1410   384   105    28     8     2     1
   58786 45220 17556  5220  1435   384   105    28     8     2     1
		

Crossrefs

Cf. A000108 (1st column), A007223 (2nd column), A056711 (3rd column), A088327 (row sums).
T(2n,n) gives A292668.

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(C(i)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    c[n_] := c[n] = Binomial[2*n, n]/(n + 1);
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[c[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)

Formula

T(n,1) = A000108(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000108(j). - Alois P. Heinz, Apr 13 2017