cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275433 Triangle read by rows: T(n,k) is the number of compositions of n having degree of asymmetry equal to k (n>=0; 0<=k<=n/3).

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 4, 4, 12, 8, 20, 4, 8, 44, 12, 16, 68, 44, 16, 132, 100, 8, 32, 196, 252, 32, 32, 356, 500, 136, 64, 516, 1068, 384, 16, 64, 900, 1956, 1096, 80, 128, 1284, 3804, 2592, 384, 128, 2180, 6612, 6152, 1280, 32, 256, 3076, 12108, 13056, 4080, 192, 256, 5124, 20292, 27784, 11056, 1024, 512, 7172, 35644, 54816, 28960, 3904, 64
Offset: 0

Views

Author

Emeric Deutsch, Jul 29 2016

Keywords

Comments

The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its degree of asymmetry is 0.
Sum_{k>=0} k*T(n,k) = A275434(n).

Examples

			T(4,0) = 4 because we have 4, 22, 121, and 1111.
T(4,1) = 4 because we have 13, 31, 112, and 211.
Triangle starts:
  1;
  1;
  2;
  2,2;
  4,4;
  4,12;
  8,20,4.
		

Crossrefs

Cf. A275434.
Row sums give A011782.
Column k=0 gives A016116.

Programs

  • Maple
    G := (1-z^2)/((1-z)*(1-2*z^2)-2*t*z^3): Gser := simplify(series(G, z = 0, 24)): for n from 0 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, add(b(n-j,
          `if`(i=0, j, 0))*`if`(i>0 and i<>j, x, 1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 29 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[b[n - j, If[i == 0, j, 0]]*If[i > 0 && i != j, x, 1], {j, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,z) = (1-z^2)/((1-z)*(1-2*z^2) - 2*t*z^3). In the more general situation of compositions into a[1]=1} z^(a[j]), we have G(t,z) = (1 + F(z))/(1 - F(z^2) - t*(F(z)^2 - F(z^2))). In particular, for t=0 we obtain Theorem 1.2 of the Hoggatt et al. reference.