cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275442 Triangle read by rows: T(n,k) is the number of compositions without 2's and having asymmetry degree equal to k (n>=0; 0<=k<=floor(n/4)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 8, 5, 16, 7, 26, 4, 9, 44, 12, 12, 70, 32, 16, 108, 76, 21, 166, 156, 8, 28, 248, 308, 32, 37, 368, 572, 104, 49, 540, 1020, 288, 65, 784, 1768, 696, 16, 86, 1132, 2976, 1568, 80, 114, 1622, 4908, 3304, 304, 151, 2312, 7944, 6624, 960, 200, 3280, 12652, 12768, 2640, 32
Offset: 0

Views

Author

Emeric Deutsch, Aug 16 2016

Keywords

Comments

The asymmetry degree of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the asymmetry degree of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
Number of entries in row n is 1 + floor(n/4).
Sum of entries in row n is A005251(n+1).
T(n,0) = A000931(n+5) (= number of palindromic compositions of n without 2's).
Sum_{k >= 0} k*T(n,k) = A275443(n).

Examples

			Row 5 is [3,4] because the compositions of 5 without 2's are 5, 113, 131, 311, 14, 41, and 11111, having asymmetry degrees 0, 1, 0, 1, 1, 1, and 0, respectively.
Triangle starts:
  1;
  1;
  1;
  2;
  2,2;
  3,4;
  4,8;
  5,16.
		

References

  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.

Crossrefs

Programs

  • Maple
    G := (1-z^2)/(1-z-z^2+z^4-2*t*z^4): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
  • Mathematica
    Table[BinCounts[#, {0, 1 + Floor[n/4], 1}] &@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; a == 2]], 1]]], {n, 0, 20}] // Flatten (* Michael De Vlieger, Aug 17 2016 *)
  • PARI
    T_zt(max_row) = {my(N = max_row+1, z='z+O('z^N), h=(1-z^2)/(1-z-z^2+z^4-2*t*z^4)); vector(N, n, Vecrev(polcoeff(h, n-1)))}
    T_zt(10) \\ John Tyler Rascoe, May 09 2025

Formula

G.f.: G(t,z) = (1-z^2)/(1-z-z^2+z^4-2*t*z^4). In the more general situation of compositions into a[1]=1} z^(a[j]), we have G(t,z) = (1 + F(z))/(1 - F(z^2) - t*(F(z)^2 - F(z^2))). In particular, for t=0 we obtain Theorem 1.2 of the Hoggatt et al. reference.

A275434 Sum of the degrees of asymmetry of all compositions of n.

Original entry on oeis.org

0, 0, 0, 2, 4, 12, 28, 68, 156, 356, 796, 1764, 3868, 8420, 18204, 39140, 83740, 178404, 378652, 800996, 1689372, 3553508, 7456540, 15612132, 32622364, 68040932, 141674268, 294533348, 611436316, 1267611876, 2624702236, 5428361444, 11214636828
Offset: 0

Views

Author

Emeric Deutsch, Jul 29 2016

Keywords

Comments

The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its degree of asymmetry is 0.

Examples

			a(4) = 4 because the compositions 4, 13, 22, 31, 112, 121, 211, 1111 have degrees of asymmetry 0, 1, 0, 1, 1, 0, 1, 0, respectively.
		

Crossrefs

Programs

  • Maple
    g := 2*z^3*(1-z)/((1-2*z)*(1-z-2*z^2)): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
    a := proc(n) if n = 0 then 0 elif n = 1 then 0 else -(4/9)*(-1)^n+(1/36)*(3*n-2)*2^n end if end proc: seq(a(n), n = 0 .. 32);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[b[n - j, If[i==0, j, 0]] If[i > 0 && i != j, x, 1], {j, 1, n}]]];
    a[n_] := Function[p, Sum[i Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0]];
    a /@ Range[0, 32] (* Jean-François Alcover, Nov 24 2020, after Alois P. Heinz in A275433 *)

Formula

G.f.: g(z) = 2*z^3*(1-z)/((1-2*z)*(1-z-2*z^2)). In the more general situation of compositions into a[1]=1} z^(a[j]), we have g(z) = (F(z)^2 - F(z^2))/((1+F(z))*(1-F(z))^2).
a(n) = -(4/9)*(-1)^n + (3*n - 2)*2^n/36 for n>=2; a(0) = a(1) = 0.
a(n) = Sum_{k>=0} k*A275433(n,k).
a(n) = 2*A059570(n-2) for n>=3. - Alois P. Heinz, Jul 29 2016
Showing 1-2 of 2 results.