cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275457 G.f.: 3F2([2/9, 4/9, 5/9], [1/3, 1], 729 x).

Original entry on oeis.org

1, 120, 45045, 21707400, 11708971560, 6735720993408, 4039678502036100, 2494516661768577600, 1573990406710539567750, 1009797626141015909237040, 656436978973434195655059942, 431326871057383042747830748560, 285942228994752084893009228453460, 190985447073724962020463006948873600
Offset: 0

Views

Author

Gheorghe Coserea, Jul 31 2016

Keywords

Comments

"Other hypergeometric 'blind spots' for Christol’s conjecture" - (see Bostan link).

Examples

			1 + 120*x + 45045*x^2 + 21707400*x^3 + ...
		

Crossrefs

Programs

  • Maple
    A[0]:= 1:
    for n from 0 to 20 do A[n+1]:= 3*(5+9*n)*(2+9*n)*(4+9*n)*A[n]/((n+1)^2*(3*n+1)) od:
    seq(A[i],i=0..21); # Robert Israel, Jan 20 2017
  • Mathematica
    CoefficientList[HypergeometricPFQ[{2/9, 4/9, 5/9}, {1/3, 1}, 729 x] + O[x]^14, x] (* Jean-François Alcover, Sep 18 2018 *)
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 12; x = 'x + O('x^N);
    Vec(hypergeom([2/9, 4/9, 5/9], [1/3, 1], 729*x, N))

Formula

G.f.: hypergeom([2/9, 4/9, 5/9], [1/3, 1], 729*x).
From Robert Israel, Jan 20 2017: (Start)
a(n) = (2/3)*729^n*Gamma(5/9+n)*Gamma(2/9+n)*Gamma(4/9+n)*sin((4/9)*Pi)*3^(1/2)/(Gamma(2/9)*Gamma(n+1)^2*Gamma(n+1/3)*Gamma(2/3)).
D-finite with recurrence a(n+1) = 3*(5+9*n)*(2+9*n)*(4+9*n)*a(n)/((n+1)^2*(3*n+1)).
a(n) ~ (2*sin(4*Pi/9)/(sqrt(3)*Gamma(2/9)*Gamma(2/3)))*729^n/n^(10/9).
A007949(a(n)) = A053735(n). (End)