A275475 Primes p such that p+2^3, p+2^5 and p+2^7 are all primes.
11, 29, 71, 149, 491, 599, 701, 1439, 1451, 2339, 3761, 4211, 5399, 5651, 6269, 6701, 7541, 9059, 9311, 9689, 9941, 10859, 11831, 12569, 12791, 13679, 15299, 15551, 16979, 18089, 19301, 19469, 22031, 22541, 23549, 23879, 25229, 25841, 27329, 27791, 28541, 30809
Offset: 1
Keywords
Examples
11 is in the sequence because 11+8 = 19, 11+32 = 43 and 11+128 = 139 are all primes. 29 is in the sequence because 29+8 = 37, 29+32 = 61 and 29+128 = 157 are all primes.
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime@ Range@ 3450, Function[k, Times @@ Boole@ PrimeQ@ Map[k + 2^# &, {3, 5, 7}] == 1]] (* Michael De Vlieger, Aug 10 2016 *) Select[Prime[Range[4000]],AllTrue[#+{8,32,128},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 26 2018 *)
-
Perl
use ntheory ":all"; say for sieve_prime_cluster(2, 1e6, 2**3, 2**5, 2**7); # Dana Jacobsen, Sep 29 2016