A275496 a(n) = n^2*(2*n^2 + (-1)^n).
0, 1, 36, 153, 528, 1225, 2628, 4753, 8256, 13041, 20100, 29161, 41616, 56953, 77028, 101025, 131328, 166753, 210276, 260281, 320400, 388521, 468996, 559153, 664128, 780625, 914628, 1062153, 1230096, 1413721, 1620900, 1846081, 2098176, 2370753, 2673828
Offset: 0
Examples
a(5) = 5^4 + Sum_{k=0..(5^2 - (5 mod 2))} 2k = 625 + Sum_{k=0..(25 - 1)} 2k = 625 + 600 = 1225. a(12) = 12^4 + Sum_{k=0..(12^2 - (12 mod 2))} 2k = 20736 + Sum_{k=0..(144 - 0)} 2k = 20736 + 20880 = 41616.
Links
- Colin Barker and Daniel Poveda Parrilla, Table of n, a(n) for n = 0..46340 [n = 1 through 1000 by Colin Barker, Aug 02 2016; and n=1001 to 46340 by Daniel Poveda Parrilla, Aug 04 2016]
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
Mathematica
Table[n^2 ((-1)^n + 2 n^2), {n, 0, 34}] (* or *) CoefficientList[Series[x (1 + 34 x + 79 x^2 + 156 x^3 + 79 x^4 + 34 x^5 + x^6)/((1 - x)^5 (1 + x)^3), {x, 0, 34}], x] (* Michael De Vlieger, Aug 01 2016 *) LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,36,153,528,1225,2628,4753},40] (* Harvey P. Dale, Sep 10 2016 *)
-
PARI
a(n)=n=n^2; if(n%2,2*n-1,2*n+1)*n \\ Charles R Greathouse IV, Jul 30 2016
-
PARI
concat(0, Vec(x*(1+34*x+79*x^2+156*x^3+79*x^4+34*x^5+x^6)/((1-x)^5*(1+x)^3) + O(x^100))) \\ Colin Barker, Aug 01 2016
Formula
a(n) = n^4 + Sum_{k=0..(n^2 - (n mod 2))} 2k.
a(n) = A275543(n)*(n^2).
From Colin Barker, Aug 01 2016 and Aug 04 2016: (Start)
a(n) = n^2*(2*n^2 + (-1)^n).
a(n) = 2*n^4 + n^2 for n even.
a(n) = 2*n^4 - n^2 for n odd.
G.f.: x*(1 +34*x +79*x^2 +156*x^3 +79*x^4 +34*x^5 +x^6) / ((1-x)^5*(1+x)^3).
(End)
E.g.f.: x*(2*(1 + 7*x + 6*x^2 + x^3)*exp(x) - exp(-x)). - G. C. Greubel, Aug 05 2016
Sum_{n>=1} 1/a(n) = 1 - Pi^2/12 + (tan(c) - coth(c))*c, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022
Extensions
New name from Colin Barker, Aug 04 2016
Comments