cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275496 a(n) = n^2*(2*n^2 + (-1)^n).

Original entry on oeis.org

0, 1, 36, 153, 528, 1225, 2628, 4753, 8256, 13041, 20100, 29161, 41616, 56953, 77028, 101025, 131328, 166753, 210276, 260281, 320400, 388521, 468996, 559153, 664128, 780625, 914628, 1062153, 1230096, 1413721, 1620900, 1846081, 2098176, 2370753, 2673828
Offset: 0

Views

Author

Daniel Poveda Parrilla, Jul 30 2016

Keywords

Comments

All terms of this sequence are triangular numbers. Graphically, for each term of the sequence, one corner of the square of squares (4th power) will be part of the corresponding triangle's hypotenuse if the term is an odd number. Otherwise, it will not be part of it.
a(A000129(n)) is a square triangular number.
a(2^((A000043(n) - 1)/2)) - 2^A000043(n) is a perfect number.

Examples

			a(5) = 5^4 + Sum_{k=0..(5^2 - (5 mod 2))} 2k = 625 + Sum_{k=0..(25 - 1)} 2k = 625 + 600 = 1225.
a(12) = 12^4 + Sum_{k=0..(12^2 - (12 mod 2))} 2k = 20736 + Sum_{k=0..(144 - 0)} 2k = 20736 + 20880 = 41616.
		

Crossrefs

Programs

  • Mathematica
    Table[n^2 ((-1)^n + 2 n^2), {n, 0, 34}] (* or *)
    CoefficientList[Series[x (1 + 34 x + 79 x^2 + 156 x^3 + 79 x^4 + 34 x^5 +
    x^6)/((1 - x)^5 (1 + x)^3), {x, 0, 34}], x] (* Michael De Vlieger, Aug 01 2016 *)
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,36,153,528,1225,2628,4753},40] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    a(n)=n=n^2; if(n%2,2*n-1,2*n+1)*n \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    concat(0, Vec(x*(1+34*x+79*x^2+156*x^3+79*x^4+34*x^5+x^6)/((1-x)^5*(1+x)^3) + O(x^100))) \\ Colin Barker, Aug 01 2016

Formula

a(n) = n^4 + Sum_{k=0..(n^2 - (n mod 2))} 2k.
a(n) = A275543(n)*(n^2).
From Colin Barker, Aug 01 2016 and Aug 04 2016: (Start)
a(n) = n^2*(2*n^2 + (-1)^n).
a(n) = 2*n^4 + n^2 for n even.
a(n) = 2*n^4 - n^2 for n odd.
G.f.: x*(1 +34*x +79*x^2 +156*x^3 +79*x^4 +34*x^5 +x^6) / ((1-x)^5*(1+x)^3).
(End)
a(n) = n^2*A000217(2n-1) + 2n*A000217(n-(n mod 2)) for n > 0.
E.g.f.: x*(2*(1 + 7*x + 6*x^2 + x^3)*exp(x) - exp(-x)). - G. C. Greubel, Aug 05 2016
a(n) = A000217(A077221(n)).
a(n) = (A001844(A077221(n)) - 1)/4.
Sum_{n>=1} 1/a(n) = 1 - Pi^2/12 + (tan(c) - coth(c))*c, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

Extensions

New name from Colin Barker, Aug 04 2016