A275539 a(n) = n! + n*(n-1)!!.
1, 2, 4, 12, 36, 160, 810, 5376, 41160, 366336, 3638250, 39959040, 479126340, 6227619840, 87180183090, 1307684044800, 20922822320400, 355687603568640, 6402374325997650, 121645103938928640, 2432902021271221500, 51090942249743155200, 1124000728080092512650
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..449
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [1, 2, 4, 12, 36] [n+1], ((n-3)^2*n*a(n-1) +(n-4)*n*(n-1)*a(n-2) -(n-3)*n*(n-1)*(n-2)*a(n-3))/((n-4)*(n-2))) end: seq(a(n), n=0..25); # Alois P. Heinz, Dec 07 2016
-
Mathematica
Table[n! + n (n-1)!!, {n, 0, 20}] (* Bruno Berselli, Aug 11 2016 *)
Formula
a(n) = n! + n*(n-1)!! = n*((n-1)! + (n-1)!!).