cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275548 Number of compositions of n if only the order of the odd numbers matter.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 43, 68, 113, 181, 298, 479, 781, 1260, 2048, 3308, 5364, 8672, 14048, 22720, 36782, 59502, 96305, 155807, 252136, 407943, 660113, 1068056, 1728210, 2796266, 4524531, 7320797, 11845394, 19166191, 31011673, 50177864, 81189642, 131367506
Offset: 0

Views

Author

Gregory L. Simay, Aug 01 2016

Keywords

Comments

The number of partitions of n = 2k with only even numbers is p(k) = A000041(k). The number of compositions of n with only odd numbers is F(n) = the n-th Fibonacci number = A000045(n). Enumerating a(n) is therefore a sum of products of partition numbers and Fibonacci numbers.

Examples

			The compositions enumerated by a(6) = 16 are (6),(5,1),(1,5),(4,2)=(2,4), (3,3), (4,1,1)=(1,4,1)=(1,1,4), (2,3,1)=(3,2,1)=(3,1,2), (2,1,3)=(1,2,3)=(1,3,2), (2,2,2), (3,1,1,1),(1,3,1,1),(1,1,3,1),(1,1,1,3), (2,2,1,1)=(2,1,2,1)=(2,1,1,2)=(1,2,1,2)=(1,1,2,2)=(1,2,2,1), (2,1,1,1,1)=(1,2,1,1,1)=(1,1,2,1,1)=(1,1,1,2,1)=(1,1,1,1,2), (1,1,1,1,1,1).
The compositions enumerated by a(5) = 9 are (5), (4,1)=(1,4), (3,2)=(2,3), (3,1,1), (1,3,1), (1,1,3), (2,2,1)=(2,1,2)=(1,2,2), (2,1,1,1)=(1,2,1,1)=(1,1,2,1)=(1,1,1,2), (1,1,1,1,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; (t-> `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, i-1, p+`if`(t, j, 0))/
          `if`(t, j, 0)!, j=0..n/i))))(i::odd)
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 03 2016
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + If[#, j, 0]]/If[#, j, 0]!, {j, 0, n/i}]]]&[OddQ[i]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[1/(1 - x - x^2) * Product[1/(1 - x^(2*k)), {k, 2, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 02 2018 *)

Formula

a(2k+1) = Sum_{j=0..k} p(j)*F(2k + 1 - 2j), where p(j) = A000041(j), the number of partitions of j, and F(j) = A000045(j), the j-th Fibonacci number.
a(2k) = p(k) + Sum_{j=0..(k-1)} p(j)*F(2k - 2j).
a(2k+1) = a(2k) + a(2k-1).
a(2k) = a(2k-1) + a(2k-2) + p(k) - p(k-1).
G.f.: 1/(1 - x - x^2) * Product_{n>=2} 1/(1 - x^(2*n)). - Peter Bala, Aug 03 2016 [corrected by Vaclav Kotesovec, Jun 02 2018]
a(n) ~ c * phi^n, where c = 1 / (sqrt(5) * QPochhammer[1/phi^2]) = 0.92890318501026782066... and phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 02 2018