A275552 Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1.
1, 1, 2, 5, 36, 313, 3904, 58825, 1048640, 21523361, 500000256, 12968712301, 371504186368, 11649042561241, 396857386631168, 14596463012695313, 576460752303439872, 24330595937833434241, 1092955779869348331520, 52063675148955620766421, 2621440000000000000262144
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
Cf. A000312 All endofunctions;
Cf. A000169 Classes under translation mod n;
Cf. A001700 Classes under sort;
Cf. A056665 Classes under rotation;
Cf. A168658 Classes under complement to n+1;
Cf. A130293 Classes under translation and rotation;
Cf. A081721 Classes under rotation and reversal;
Cf. A275549 Classes under reversal;
Cf. A275550 Classes under reversal and complement;
Cf. A275551 Classes under translation and reversal;
Cf. A275553 Classes under translation, complement and reversal;
Cf. A275554 Classes under translation, rotation and complement;
Cf. A275555 Classes under translation, rotation and reversal;
Cf. A275556 Classes under translation, rotation, complement and reversal;
Cf. A275557 Classes under rotation and complement;
Cf. A275558 Classes under rotation, complement and reversal.
Programs
-
Mathematica
a[0] = 1; a[n_?OddQ] := 1 + (n^n - n)/(2n); a[n_?EvenQ] := 2^(n-1) + (n^n - 2^(n-1)*n)/(2n); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 07 2017, translated from PARI *)
-
PARI
a(n) = if(n%2, 1 + (n^n - 1*n)/(2*n), 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n)); \\ Andrew Howroyd, Sep 30 2017
Formula
a(n) = 1 + (n^n - 1*n)/(2*n) if n is odd,
a(n) = 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n) if n is even.
Comments