A275591 a(n) = n^2 + 9*n + 1.
1, 11, 23, 37, 53, 71, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 401, 443, 487, 533, 581, 631, 683, 737, 793, 851, 911, 973, 1037, 1103, 1171, 1241, 1313, 1387, 1463, 1541, 1621, 1703, 1787, 1873, 1961, 2051, 2143, 2237, 2333, 2431, 2531, 2633, 2737
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n^2 + 9 n + 1, {n, 0, 50}] (* Bruno Berselli, Aug 05 2016 *)
-
PARI
a(n) = n^2 + 9*n + 1 \\ Charles R Greathouse IV, Aug 03 2016
-
PARI
Vec((1+8*x-7*x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Aug 04 2016
Formula
O.g.f.: (1 + 8*x - 7*x^2)/(1 - x)^3. - Colin Barker, Aug 03 2016
E.g.f.: (1 + 10*x + x^2)*exp(x).
a(n) = a(-n-9) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Colin Barker, Aug 03 2016
a(n) = 1 + A028569(n). - Omar E. Pol, Aug 02 2016
a(n) + a(-n) = (n-1)^2 + (n+1)^2.
Sum_{i>=0} 1/a(i) = 9736/29393 + tan(sqrt(77)*Pi/2)*Pi/sqrt(77) = 1.301517...
Extensions
Edited and extended by Bruno Berselli, Aug 05 2016
Comments