A275600 Numbers that can be written in all bases from base 2 to base 6 using only the digits 0, 1 and 2.
0, 1, 2, 6, 36, 37, 260, 1302, 1376, 1380, 1381, 1382, 1556, 1560, 1561, 1562, 16932, 562500, 562501, 562502, 562506, 562512, 562536, 562537, 562752, 562760, 23610752, 23610756, 23610757, 23610786, 23615750, 23615760, 23615761, 23615762, 23615785, 23615786, 23626310
Offset: 1
Examples
16932 is in the sequence because this number can be written in bases 2 through 6 using only the digits 0, 1 and 2: 16932(b4) = 10020210 / (b5) = 1020212 / (b6) = 210220.
Links
- Rémy Sigrist and Chai Wah Wu, Table of n, a(n) for n = 1..10000 [Terms 1 through 187 by Chai Wah Wu]
Programs
-
Mathematica
Select[Range[10^6], Function[k, Max@ Flatten@ Map[IntegerDigits[k, #] &, Range[4, 6]] < 3]] (* or *) Select[Range[10^5], Function[k, Total@ Flatten@ Map[Take[RotateRight@ DigitCount[k, #], -(# - 3)] &, Range[4, 6]] == 0]] (* (not as efficient) Michael De Vlieger, Aug 03 2016 *)
-
PARI
nextWithSmallDigits(n, base) = my (pow=1, rem=n, val=0, d); while (rem>0, d = rem % base; rem = rem \ base; if (d>2, val = 0; rem = rem+1, val = val + d*pow); pow = pow * base); return (val) { n = 0; prev = 0; while (n < 300, succ = prev; for (b=4,6, succ = nextWithSmallDigits(succ, b)); if (prev==succ, n = n+1; print(n " " prev); prev = succ+1, prev = succ)) } \\ Rémy Sigrist, Sep 08 2016
-
Perl
use ntheory ":all"; my($x,$n10)=(0,0); while ($x < 50) { my $n = fromdigits( todigitstring($n10++, 3), 6); next if vecany { $ > 2 } todigits($n, 4); next if vecany { $ > 2 } todigits($n, 5); print ++$x," $n\n"; } # Dana Jacobsen, Aug 16 2016
-
Python
from gmpy2 import digits A275600_list = [n for n in (int(digits(m,3),6) for m in range(10**6)) if max(digits(n,5)) <= '2' and max(digits(n,4)) <= '2'] # Chai Wah Wu, Aug 15 2016
Extensions
a(18)-a(26) from Michael De Vlieger, Aug 03 2016
a(27)-a(37) from Chai Wah Wu, Aug 15 2016
Comments