A275647 Decimal expansion of Pi^2/6 - Sum_{k>=1} 1/prime(k)^2.
1, 1, 9, 2, 6, 8, 6, 6, 4, 6, 8, 0, 7, 1, 6, 0, 9, 3, 7, 9, 6, 5, 8, 7, 1, 8, 0, 1, 8, 1, 3, 7, 7, 7, 2, 5, 5, 0, 4, 5, 7, 1, 8, 5, 5, 7, 9, 6, 6, 9, 0, 6, 0, 1, 5, 9, 9, 9, 1, 3, 9, 2, 9, 9, 0, 1, 8, 8, 4, 2, 4, 4, 3, 0, 3, 9, 2, 8, 9, 9, 9, 9, 3, 8, 4, 6, 7, 1, 3, 5, 6, 2, 6, 4, 8, 5, 1, 8, 4, 7, 0, 8, 1, 1, 9, 8, 0, 9, 1, 2, 9, 5, 4, 1, 6, 5, 5, 9, 6, 6
Offset: 1
Examples
1/1^2 + 1/4^2 + 1/6^2 + 1/8^2 + 1/9^2 + 1/10^2 + ... = 1.192686646807160937965871801813777255045718557966906015999...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Ilya Gutkovskiy, Nonprime zeta function.
- Eric Weisstein's World of Mathematics, Riemann Zeta Function 2.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
Programs
-
Mathematica
RealDigits[Pi^2/6 - PrimeZetaP[2], 10, 120][[1]] RealDigits[Zeta[2] - PrimeZetaP[2], 10, 120][[1]]
-
PARI
eps()=2.>>bitprecision(1.) primezeta(s)=my(lm=s*log(2)); lm=lambertw(lm/eps())\lm; sum(k=1,lm, moebius(k)*log(abs(zeta(k*s)))/k) zeta(2) - primezeta(2) \\ Charles R Greathouse IV, Aug 05 2016
-
PARI
Pi^2/6 - sumeulerrat(1/p, 2) \\ Amiram Eldar, Mar 19 2021
Comments