cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A062312 Nonprime numbers squared.

Original entry on oeis.org

1, 16, 36, 64, 81, 100, 144, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2304, 2401, 2500, 2601, 2704, 2916, 3025, 3136, 3249, 3364, 3600, 3844, 3969, 4096, 4225
Offset: 1

Views

Author

Jason Earls, Jul 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&]^2 (* Harvey P. Dale, Jan 27 2016 *)
  • PARI
    for(n=1,30, if(isprime(n), n+1,print(n^2)))
    
  • PARI
    n=0; for (m=1, 2000, if (!isprime(m), write("b062312.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    is(n)=issquare(n,&n) && !isprime(n) \\ Charles R Greathouse IV, Sep 18 2015

Formula

a(n) = A018252(n)^2. - Omar E. Pol, Oct 30 2007
Sum_{n>=1} 1/a(n) = A275647. - Amiram Eldar, Oct 14 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 05 2001

A278419 Decimal expansion of sum of cubes of reciprocals of nonprime numbers.

Original entry on oeis.org

1, 0, 2, 7, 2, 9, 4, 2, 6, 3, 8, 6, 0, 1, 5, 0, 7, 4, 8, 9, 7, 6, 6, 2, 4, 8, 4, 6, 8, 4, 5, 7, 4, 3, 2, 8, 9, 7, 8, 9, 5, 7, 4, 1, 7, 0, 4, 1, 4, 3, 4, 9, 5, 9, 1, 9, 0, 3, 5, 9, 9, 5, 3, 8, 6, 4, 0, 2, 0, 6, 6, 1, 6, 2, 5, 8, 1, 8, 3, 5, 0, 2, 5, 5, 0, 8, 2, 1, 6, 7, 3, 0, 7, 2, 3, 6, 2, 6, 9, 7, 5, 9, 9, 4
Offset: 1

Views

Author

Jean-François Alcover, Nov 21 2016

Keywords

Examples

			1.0272942638601507489766248468457432897895741704143495919035995386402...
		

Crossrefs

Cf. A275647.

Programs

  • Mathematica
    RealDigits[Zeta[3] - PrimeZetaP[3], 10, 104][[1]]
  • PARI
    zeta(3) - sumeulerrat(1/p, 3) \\ Amiram Eldar, Mar 19 2021

Formula

Sum_{n>=1} 1/n^3 - Sum_{n>=1} 1/prime(n)^3.
Equals zeta(3) - primezetaP(3).
Sum of cubes of reciprocals of composite numbers = zeta(3) - primezetaP(3) - 1 = 0.02729426386...

A282468 Decimal expansion of the zeta function at 2 of every second prime number.

Original entry on oeis.org

1, 4, 4, 7, 1, 5, 5, 8, 6, 6, 8, 8, 7
Offset: 0

Views

Author

Terry D. Grant, Apr 14 2017

Keywords

Comments

From Husnain Raza, Aug 30 2023: (Start)
Note that since p_n > n*log(n), we can place a bound on the tail of the sum:
Sum_{n >= N} (prime(2n))^(-2) <= Sum_{n >= N} (2*n*log(2n))^(-2) <= Integral_{x=N..oo} (2*x*log(2x))^(-2) dx.
Taking the sum over all primes < 10^12, we see that the constant lies between 0.14471558668870 and 0.14471558668873. (End)

Examples

			1/3^2 + 1/7^2 + 1/13^2 + 1/19^2 + 1/29^2 + ... = 0.14471558...
		

Crossrefs

Zeta functions at 2: A085548 (for primes), A275647 (for nonprimes), A013661 (for natural numbers), A117543 (for semiprimes), A131653 (for triprimes), A222171 (for even numbers), A111003 (for odd numbers).

Programs

  • PARI
    sum(n=1, 2500000, 1./prime(2*n)^2)
    
  • PARI
    \\ see Raza link

Formula

Equals Sum_{n>=1} 1/A031215(n)^2 = Sum_{n>=1} 1/prime(2n)^2.

Extensions

a(8)-a(12) from Husnain Raza, Aug 31 2023

A335589 Decimal expansion of the sum of the reciprocals of the squares of composite numbers.

Original entry on oeis.org

1, 9, 2, 6, 8, 6, 6, 4, 6, 8, 0, 7, 1, 6, 0, 9, 3, 7, 9, 6, 5, 8, 7, 1, 8, 0, 1, 8, 1, 3, 7, 7, 7, 2, 5, 5, 0, 4, 5, 7, 1, 8, 5, 5, 7, 9, 6, 6, 9, 0, 6, 0, 1, 5, 9, 9, 9, 1, 3, 9, 2, 9, 9, 0, 1, 8, 8, 4, 2, 4, 4, 3, 0, 3, 9, 2, 8, 9, 9, 9, 9, 3, 8, 4, 6, 7, 1, 3, 5, 6, 2, 6, 4, 8, 5, 1, 8, 4, 7, 0, 8, 1, 1, 9, 8
Offset: 0

Views

Author

Jon E. Schoenfield, Jan 26 2021

Keywords

Examples

			Equals 1/4^2 + 1/6^2 + 1/8^2 + 1/9^2 + 1/10^2 + ... = 0.19268664680716093796587180181377725504571855796690...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Zeta[2] - PrimeZetaP[2] - 1, 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Equals Sum_{k>=1} 1/A002808(k)^2.
Equals A275647 - 1.

A284748 Decimal expansion of the sum of reciprocals of composite powers.

Original entry on oeis.org

2, 2, 6, 8, 4, 3, 3, 3, 0, 9, 5, 0, 2, 0, 4, 8, 7, 2, 1, 3, 5, 6, 3, 2, 5, 4, 0, 1, 4, 4, 0, 5, 7, 6, 0, 4, 3, 8, 1, 2, 5, 8, 6, 6, 3, 9, 1, 6, 8, 1, 3, 9, 5, 1, 6, 8, 8, 9, 9, 3, 9, 3, 2, 6, 4, 3, 2, 9, 0, 9, 7, 1, 5, 1, 0, 7, 6, 6, 6, 0, 2, 1, 6, 6, 2, 0, 1, 2, 4, 1, 1, 7, 6, 6, 7, 9, 1, 8, 1, 6, 7, 1, 0, 6, 2, 1
Offset: 0

Views

Author

Terry D. Grant, Apr 01 2017

Keywords

Examples

			Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
= 0.226843330950204872135632540144057604...
		

Crossrefs

Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).

Programs

  • Mathematica
    RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
  • PARI
    1 - sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
Equals 1 - A136141.

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021

A335590 Decimal expansion of the sum of the reciprocals of the squares of the perfect powers > 1.

Original entry on oeis.org

1, 0, 0, 4, 7, 5, 3, 2, 7, 2, 0, 0, 0, 9, 3, 7, 7, 5, 8, 6, 0, 1, 4, 8, 9, 5, 1, 6, 4, 3, 6, 7, 9, 5, 0, 3, 8, 9, 3, 0, 2, 8, 8, 3, 9, 9, 2, 4, 7, 2, 4, 4, 8, 9, 4, 5, 6, 1, 9, 2, 9, 4, 0, 6, 1, 0, 6, 3, 5, 7, 7, 3, 4, 9, 4, 4, 6, 9, 2, 1, 7, 0, 5, 0, 9, 5, 8, 5, 2, 0, 5, 1, 2, 1, 8, 1, 6, 3, 9, 7, 6, 2, 0, 5, 7
Offset: 0

Views

Author

Jon E. Schoenfield, Jan 26 2021

Keywords

Examples

			Equals 1/4^2 + 1/8^2 + 1/9^2 + 1/16^2 + 1/25^2 + 1/27^2 + 1/32^2 + 1/36^2 + 1/49^2 + 1/64^2 + 1/81^2 + 1/100^2 + ... = 0.10047532720009377586014895164367950389302883992472...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[MoebiusMu[k]*(1 - Zeta[2*k]), {k, 2, 200}], 10, 105][[1]] (* Amiram Eldar, Jan 27 2021 *)
  • PARI
    suminf(k=2,moebius(k)*(1-zeta(2*k))) \\ Hugo Pfoertner, Jan 27 2021

Formula

Equals Sum_{k>=2} 1/A001597(k)^2.
Equals Sum_{k>=2} mu(k)*(1 - zeta(2*k)). - Amiram Eldar, Jan 27 2021
Showing 1-6 of 6 results.