A275699 Excess of numbers that are not squarefree.
1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 3, 1, 1, 3, 3, 1, 2, 1, 1, 4, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 1, 6, 1, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 2, 5, 2, 1, 3, 1, 1, 3, 1, 4, 1, 4, 2, 1
Offset: 1
Keywords
Examples
Since 16 = 2^4, 16 has four prime divisors, but only one distinct divisor. Hence Omega(16) - omega(16) = 4 - 1 = 3. As 16 is the fifth number that is not squarefree, its corresponding 3 is a(5) in this sequence. 17 is prime and thus has no excess and no corresponding term in this sequence. 18 = 2 * 3^2, Omega(18) - omega(18) = 3 - 2 = 1, thus a(6) = 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
DeleteCases[Table[PrimeOmega[n] - PrimeNu[n], {n, 200}], 0] (* Alonso del Arte, Aug 05 2016 *)
-
PARI
for(n=1, 200, if(bigomega(n)!=omega(n), print1(bigomega(n)-omega(n), ", ")))
Formula
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) / (1-6/Pi^2) = A136141/A229099 = 1.9719717... - Amiram Eldar, Feb 10 2021
Comments