cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275699 Excess of numbers that are not squarefree.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 3, 1, 1, 3, 3, 1, 2, 1, 1, 4, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 1, 6, 1, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 2, 5, 2, 1, 3, 1, 1, 3, 1, 4, 1, 4, 2, 1
Offset: 1

Views

Author

Felix Fröhlich, Aug 05 2016

Keywords

Comments

The "excess" of a number is the number of prime divisors with multiplicity (the Omega function, A001222) minus the number of distinct prime divisors (the omega function, A001221). A046660(n) gives the excess of n.
Since squarefree numbers have no excess, this sequence is essentially A046660 with the 0's removed.

Examples

			Since 16 = 2^4, 16 has four prime divisors, but only one distinct divisor. Hence Omega(16) - omega(16) = 4 - 1 = 3. As 16 is the fifth number that is not squarefree, its corresponding 3 is a(5) in this sequence.
17 is prime and thus has no excess and no corresponding term in this sequence.
18 = 2 * 3^2, Omega(18) - omega(18) = 3 - 2 = 1, thus a(6) = 1.
		

Crossrefs

Programs

  • Mathematica
    DeleteCases[Table[PrimeOmega[n] - PrimeNu[n], {n, 200}], 0] (* Alonso del Arte, Aug 05 2016 *)
  • PARI
    for(n=1, 200, if(bigomega(n)!=omega(n), print1(bigomega(n)-omega(n), ", ")))

Formula

a(n) = A046660(A013929(n)).
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) / (1-6/Pi^2) = A136141/A229099 = 1.9719717... - Amiram Eldar, Feb 10 2021