cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A046660 Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3, 1).
a(n) = 0 for squarefree n.
A162511(n) = (-1)^a(n). - Reinhard Zumkeller, Jul 08 2009
a(n) = the number of divisors of n that are each a composite power of a prime. - Leroy Quet, Dec 02 2009
a(A005117(n)) = 0; a(A060687(n)) = 1; a(A195086(n)) = 2; a(A195087(n)) = 3; a(A195088(n)) = 4; a(A195089(n)) = 5; a(A195090(n)) = 6; a(A195091(n)) = 7; a(A195092(n)) = 8; a(A195093(n)) = 9; a(A195069(n)) = 10. - Reinhard Zumkeller, Nov 29 2015

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 51-52.

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a046660 n = sum es - length es where es = snd $ unzip $ factorise n
    -- Reinhard Zumkeller, Nov 28 2015, Jan 09 2013
    
  • Maple
    with(numtheory); A046660 := n -> bigomega(n)-nops(factorset(n)):
    seq(A046660(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013
    # Or:
    with(NumberTheory): A046660 := n -> NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct'):  # Peter Luschny, Jul 14 2023
  • Mathematica
    Table[PrimeOmega[n] - PrimeNu[n], {n, 50}] (* or *) muf[n_] := Module[{fi = FactorInteger[n]}, Total[Transpose[fi][[2]]] - Length[fi]]; Array[muf, 50] (* Harvey P. Dale, Sep 07 2011. The second program is several times faster than the first program for generating large numbers of terms. *)
  • PARI
    a(n)=bigomega(n)-omega(n) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(f=factor(n)[,2]); vecsum(f)-#f \\ Charles R Greathouse IV, Aug 01 2016
    
  • Python
    from sympy import factorint
    def A046660(n): return sum(e-1 for e in factorint(n).values()) # Chai Wah Wu, Jul 18 2023

Formula

a(n) = Omega(n) - omega(n) = A001222(n) - A001221(n).
Additive with a(p^e) = e - 1.
a(n) = Sum_{k = 1..A001221(n)} (A124010(n,k) - 1). - Reinhard Zumkeller, Jan 09 2013
G.f.: Sum_{p prime, k>=2} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 06 2017
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Jul 28 2020
a(n) = Sum_{p|n} A286563(n/p,p), where p is prime. - Ridouane Oudra, Sep 13 2023
a(n) = A275812(n) - A056170(n). - Amiram Eldar, Jan 09 2024
a(n) = A001222(A003557(n)). - Peter Munn, Feb 06 2024

Extensions

More terms from David W. Wilson

A368039 The product of exponents of prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 4, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 6, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 4, 3, 6, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 8, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 4, 3, 2, 3, 6, 4, 2, 6, 2, 2, 4, 2, 9, 2, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A005361 that are larger than 1, since A005361(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    Select[Table[Times @@ FactorInteger[n][[;;, 2]], {n, 1, 250}], # > 1 &]
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A005361(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = ((zeta(2)*zeta(3)/zeta(6)) - 1/zeta(2))/(1-1/zeta(2)) = (A082695 - A059956)/A229099 = 3.406686208821... .

A368038 The sum of non-unitary divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 6, 3, 8, 14, 9, 12, 24, 5, 12, 16, 30, 41, 36, 24, 18, 56, 7, 15, 28, 36, 48, 48, 24, 62, 36, 105, 20, 40, 84, 39, 64, 72, 54, 48, 120, 21, 36, 87, 84, 140, 112, 60, 42, 144, 11, 64, 30, 72, 126, 96, 72, 108, 96, 233, 28, 76, 60, 120, 54, 112, 180, 117, 84
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The positive terms of A048146, since A048146(k) = 0 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); nusigma[n_] := Module[{fct = FactorInteger[n]}, If[n == 1, 0, Times @@ f @@@ fct - Times @@ (1 + Power @@@ fct)]]; Select[Array[nusigma, 200], # > 0 &]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(sigma(f) - prod(i=1, #f~, 1+f[i,1]^f[i,2]), ", ")));}

Formula

a(n) = A048146(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/2)*(1-1/zeta(3))/(1-1/zeta(2))^2 = 0.899359898779... .

A368040 The powerful part of the nonsquarefree numbers.

Original entry on oeis.org

4, 8, 9, 4, 16, 9, 4, 8, 25, 27, 4, 32, 36, 8, 4, 9, 16, 49, 25, 4, 27, 8, 4, 9, 64, 4, 72, 25, 4, 16, 81, 4, 8, 9, 4, 32, 49, 9, 100, 8, 108, 16, 4, 9, 8, 121, 4, 125, 9, 128, 4, 27, 8, 4, 144, 49, 4, 25, 8, 9, 4, 32, 81, 4, 8, 169, 9, 4, 25, 16, 36, 8, 4, 27
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A057521 that are larger than 1, since A057521(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 1, p^e, 1]; powPart[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[powPart, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A057521(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = d/(3*(1-1/zeta(2))^(3/2)) = 4.778771..., and d = A328013.

A368541 The number of exponential divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The terms of A049419 that are larger than 1, since A049419(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, numdiv(f[i, 2])); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A049419(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (A327837 - A059956)/A229099 = 2.53623753427906735929... .

A373058 The sum of the aliquot coreful divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 6, 3, 6, 14, 6, 10, 18, 5, 12, 14, 30, 36, 30, 22, 15, 42, 7, 10, 26, 24, 42, 30, 21, 62, 34, 96, 15, 38, 70, 39, 42, 66, 30, 46, 90, 14, 33, 80, 78, 126, 98, 58, 39, 90, 11, 62, 30, 42, 126, 66, 60, 102, 70, 216, 21, 74, 30, 114, 51, 78, 150, 78, 82, 126, 13
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
The positive terms of A336563: if k is a squarefree number (A005117) then the only coreful divisor of k is k itself, so k has no aliquot coreful divisors.
The number of the aliquot coreful divisors of the n-th nonsquarefree number is A368039(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Select[Array[s, 300], # > 0 &]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - 1) - k, ", "))); }
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, factorint
    def A373058(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod((p**(e+1)-1)//(p-1)-1 for p, e in factorint(m).items())-m # Chai Wah Wu, Jul 22 2024

Formula

a(n) = A336563(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (A065487 - 1)/(1-1/zeta(2))^2 = 1.50461493205911656114... .

A382969 The excess of the n-th noncubefree number.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 3, 2, 2, 5, 3, 3, 3, 2, 4, 2, 3, 3, 2, 2, 6, 2, 2, 4, 2, 4, 3, 2, 3, 2, 2, 5, 3, 3, 4, 4, 2, 3, 4, 2, 2, 7, 2, 2, 3, 2, 5, 2, 2, 3, 2, 5, 4, 2, 3, 2, 2, 2, 4, 3, 3, 2, 2, 2, 6, 3, 4, 3, 2, 4, 2, 5, 2, 5, 2, 2, 3, 2, 4, 4, 2, 3, 3, 3, 8, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2025

Keywords

Examples

			a(1) = 2 since the 1st noncubefree number is A046099(1) = 8 = 2^3. It has 3 prime factors when counted with multiplicity, and 1 distinct prime factor, so a(1) = 3 - 1 = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[Max[e] < 3, Nothing, Total[e] - Length[e]]]; Array[f, 100]
  • PARI
    list(lim) = {my(e); for(k = 2, lim, e = factor(k)[,2]; if(vecmax(e) > 2, print1(vecsum(e) - #e, ", ")));}

Formula

a(n) = A046660(A046099(n)).
a(n) >= 2.
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = ((Sum_{p prime} 1/(p*(p-1))) - (1/zeta(3)) * (Sum_{p prime} (p-1)/(p^3-1))) / (1-1/zeta(3)) = 3.12223294188308957729... .
Showing 1-7 of 7 results.