cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275709 a(n) = 2*n^3 + 3*n^2.

Original entry on oeis.org

0, 5, 28, 81, 176, 325, 540, 833, 1216, 1701, 2300, 3025, 3888, 4901, 6076, 7425, 8960, 10693, 12636, 14801, 17200, 19845, 22748, 25921, 29376, 33125, 37180, 41553, 46256, 51301, 56700, 62465, 68608, 75141, 82076, 89425, 97200, 105413, 114076, 123201, 132800, 142885
Offset: 0

Views

Author

Joshua Giambalvo, Aug 06 2016

Keywords

Comments

Apart from the initial zero this sequence gives the 2nd pentagonal number, the 4th hexagonal number, the 6th heptagonal number, the 8th octagonal number, the 10th nonagonal number, etc. as well as the 5th nonnegative number, the 7th triangular number, the 9th square, the 11th pentagonal number, the 13th hexagonal number, etc. This is a reliable pattern that does not seem to appear on any other pairs of polygonal numbers (see link).
a(n) is the maximal determinant of a 3 X 3 matrix with integer elements from {1, ..., n+1}, so (for example) the maximum determinant of a 3 X 3 matrix with integer elements from {1, ..., 5} = det(1, 5, 5; 5, 1, 5; 5, 5, 1) = a(4) = 176. - Matthew Scroggs, Dec 31 2022

Crossrefs

Programs

  • Magma
    [n^2*(2*n + 3): n in [0..30]]; // G. C. Greubel, Oct 19 2018
    
  • Maple
    seq(2*n^3+3*n^2, n=0..30); # Robert Israel, Aug 09 2016
  • Mathematica
    Table[2 n^3 + 3 n^2, {n, 0, 41}] (* or *)
    CoefficientList[Series[x (5 + 8 x - x^2)/(1 - x)^4, {x, 0, 41}], x] (* Michael De Vlieger, Aug 11 2016 *)
  • PARI
    concat(0, Vec(x*(5+8*x-x^2)/(1-x)^4 + O(x^50))) \\ Colin Barker, Aug 28 2016
    
  • PARI
    a(n)=n^2*(2*n+3) \\ Charles R Greathouse IV, Aug 28 2016
    
  • Python
    for n in range(0,50): print(n**2*(2*n+3), end=' ') # Stefano Spezia, Oct 19 2018

Formula

From Colin Barker, Aug 06 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: x*(5+8*x-x^2) / (1-x)^4. (End)
a(n) = A033431(n) + A033428(n). - Omar E. Pol, Aug 09 2016
a(n) = A000290(n) * A005408(n+1). - Robert Israel, Aug 09 2016
a(n) = A320047(1, n, 0). - Kolosov Petro, Oct 04 2018
E.g.f.: x*(5 + 9*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 19 2018
From Amiram Eldar, Jan 21 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 + 4*log(2)/9 - 16/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36 + Pi/9 -2*log(2)/9 - 8/27. (End)