A275709 a(n) = 2*n^3 + 3*n^2.
0, 5, 28, 81, 176, 325, 540, 833, 1216, 1701, 2300, 3025, 3888, 4901, 6076, 7425, 8960, 10693, 12636, 14801, 17200, 19845, 22748, 25921, 29376, 33125, 37180, 41553, 46256, 51301, 56700, 62465, 68608, 75141, 82076, 89425, 97200, 105413, 114076, 123201, 132800, 142885
Offset: 0
Links
- Carauleanu Marc and Colin Barker, Table of n, a(n) for n = 0..3030 (first 1000 terms from Colin Barker)
- Joshua Giambalvo, Illustration of initial terms in a square array, Imgur, (2016).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n^2*(2*n + 3): n in [0..30]]; // G. C. Greubel, Oct 19 2018
-
Maple
seq(2*n^3+3*n^2, n=0..30); # Robert Israel, Aug 09 2016
-
Mathematica
Table[2 n^3 + 3 n^2, {n, 0, 41}] (* or *) CoefficientList[Series[x (5 + 8 x - x^2)/(1 - x)^4, {x, 0, 41}], x] (* Michael De Vlieger, Aug 11 2016 *)
-
PARI
concat(0, Vec(x*(5+8*x-x^2)/(1-x)^4 + O(x^50))) \\ Colin Barker, Aug 28 2016
-
PARI
a(n)=n^2*(2*n+3) \\ Charles R Greathouse IV, Aug 28 2016
-
Python
for n in range(0,50): print(n**2*(2*n+3), end=' ') # Stefano Spezia, Oct 19 2018
Formula
From Colin Barker, Aug 06 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: x*(5+8*x-x^2) / (1-x)^4. (End)
a(n) = A320047(1, n, 0). - Kolosov Petro, Oct 04 2018
E.g.f.: x*(5 + 9*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 19 2018
From Amiram Eldar, Jan 21 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 + 4*log(2)/9 - 16/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36 + Pi/9 -2*log(2)/9 - 8/27. (End)
Comments