cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275741 Sum of Wilson and Lerch remainders of n-th prime.

Original entry on oeis.org

1, 3, 10, 6, 6, 17, 15, 11, 25, 38, 9, 37, 47, 39, 86, 58, 107, 50, 101, 36, 98, 45, 123, 92, 170, 57, 80, 72, 158, 194, 194, 67, 78, 133, 120, 302, 144, 158, 128, 97, 91, 303, 76, 191, 139, 178, 302, 117, 242, 179, 335, 390, 362, 197, 290, 314, 327, 227, 429
Offset: 2

Views

Author

Felix Fröhlich, Aug 07 2016

Keywords

Comments

a(n) = 0 if and only if prime(n) is in both A007540 and A197632, i.e., prime(n) is simultaneously a Wilson prime and a Lerch prime.
For n > 2, a(n) = 0 if and only if A027641(3*p-3) / A027642(3*p-3)-1 + 1/p == 0 (mod p^2), where p = prime(n) (cf. Dobson, 2016, theorem 2).
René Gy (see links) has shown that a number is simultaneously a Lerch prime and a Wilson prime if and only if it satisfies the congruence (p - 1)! + 1 == 0 (mod p^3). - John Blythe Dobson, Feb 23 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n]}, Mod[((p-1)!+1)/p, p] + Mod[(Sum[(k^(p-1)-1)/p, {k, 1, p-1}] - ((p-1)!+1)/p)/p, p]];
    Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Feb 15 2019 *)
  • PARI
    a002068(n) = my(p=prime(n)); ((p-1)!+1)/p % p
    a197631(n) = my(p=prime(n), m=p-1); sum(k=1, m, k^m, -p-m!)/p^2 % p
    a(n) = a002068(n) + a197631(n)

Formula

a(n) = A002068(n) + A197631(n).