cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275764 E.g.f. satisfies: A(x) = exp(2*x) * A(-x).

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 426, 2262, 26944, 191536, 3126160, 27728240, 575175624, 6103078632, 153600146896, 1895624842048, 56097022625536, 789039958221824, 26841919568551488, 423728844983247552, 16289858574401789440, 285136754661527448832, 12223695878727911987200, 234939121837394575935488, 11111439664638562836316800, 232614372016075736439705216, 12030859273551523180503859456, 272479395898122444403210189312
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 56*x^5/5! + 426*x^6/6! + 2262*x^7/7! + 26944*x^8/8! + 191536*x^9/9! + 3126160*x^10/10! +...
and satisfies: A(x) = exp(2*x) * A(-x).
RELATED SERIES.
A(x) = G(x)^G(x) where
G(x) = 1 + x + x^3/3! + 16*x^5/5! + 736*x^7/7! + 67096*x^9/9! + 10163176*x^11/11! + 2306198896*x^13/13! + 732199108096*x^15/15! + 309860700130816*x^17/17! + 168568765338224896*x^19/19! +...+ A274377(n)*x^n/n! +...
such that: G(x)^G(x) = exp(2*x) * G(-x)^G(-x).
sqrt( A(x)*A(-x) ) = exp(-x) * A(x) = exp(x) * A(-x) where
sqrt( A(x)*A(-x) ) = 1 + x^2/2! + 9*x^4/4! + 275*x^6/6! + 18585*x^8/8! + 2230149*x^10/10! + 418527593*x^12/12! + 113225111103*x^14/14! + 41730188633073*x^16/16! +...
A(x)*A(-x) = 1 + 2*x^2/2! + 24*x^4/4! + 820*x^6/6! + 58240*x^8/8! + 7172448*x^10/10! + 1366904704*x^12/12! + 373500984064*x^14/14! + 138613162768896*x^16/16! +...
log(A(x)) = x + x^2/2! + 6*x^4/4! + 170*x^6/6! + 11200*x^8/8! + 1328304*x^10/10! + 247677584*x^12/12! + 66739336768*x^14/14! + 24532666253568*x^16/16! +...
		

Crossrefs

Cf. A274377.

Programs

  • PARI
    {a(n) = my(G,X = x + x^2*O(x^n)); G = 1 + serreverse( log( sqrt( (1+X)^(1+x)/(1-X)^(1-x) ) ) ); n!*polcoeff(G^G, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

E.g.f.: A(x) = G(x)^G(x), where G(x) = 1 + Series_Reversion( log( sqrt( (1+x)^(1+x) / (1-x)^(1-x) ) ) ) is the e.g.f. of A274377.