A275786 a(n) = Product_{d|n} T(d) where T(x) = x*(x+1)/2 = A000217(x) = x-th triangular number.
1, 3, 6, 30, 15, 378, 28, 1080, 270, 2475, 66, 294840, 91, 8820, 10800, 146880, 153, 2908710, 190, 5197500, 38808, 50094, 276, 3184272000, 4875, 95823, 102060, 35809200, 435, 17401230000, 496, 77552640, 222156, 273105, 264600, 1511016670800, 703, 422370, 425880
Offset: 1
Keywords
Examples
a(4) = 30 because the divisors of 4 are: 1, 2 and 4; and T(1)*T(2)*T(4) = 1*3*10 = 30.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[(&*[d*(d+1) div 2: d in Divisors(n)]): n in [1..100]]
-
Maple
f:= n -> convert(map(t -> t*(t+1)/2,numtheory:-divisors(n)),`*`): map(f, [$1..100]); # Robert Israel, Aug 09 2016
-
Mathematica
t[n_]:=Divisors[n]*(Divisors[n]+1)/2;a[n_]:=Times@@t[n];Array[a,50] (* Ivan N. Ianakiev, Aug 15 2016 *)
Formula
a(p) = A000217(p) = p*(p+1)/2 for a prime p.
Comments