cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275831 a(n) = (sqrt(7)*csc(Pi/7)/2)^n + (-sqrt(7)*csc(2*Pi/7)/2)^n + (-sqrt(7)*csc(4*Pi/7)/2)^n.

Original entry on oeis.org

3, 0, 14, 21, 98, 245, 833, 2401, 7546, 22638, 69629, 211288, 645869, 1966419, 6000099, 18286016, 55765626, 170002805, 518361494, 1580379017, 4818550093, 14691183577, 44792503770, 136568135690, 416385811429, 1269524476220, 3870677629833, 11801372013543, 35981414742371, 109704347503632, 334479507291398
Offset: 0

Views

Author

Kai Wang, Aug 11 2016

Keywords

Comments

(sqrt(7)*csc(Pi/7)/2), (-sqrt(7)*csc(2*Pi/7)/2) and (-sqrt(7)*csc(4*Pi/7)/2) are the roots of the polynomial x^3 - 7*x - 7. - Corrected by Colin Barker, Aug 12 2016

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 0, a[2] == 14, a[n] == 7 a[n - 2] + 7 a[n - 3]}, a, {n, 0, 30}] (* Bruno Berselli, Aug 11 2016 *)
    LinearRecurrence[{0,7,7},{3,0,14},40] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    Vec((3-7*x^2)/(1-7*x^2-7*x^3) + O(x^30)) \\ Colin Barker, Aug 12 2016

Formula

G.f.: (3 - 7*x^2)/(1 - 7*x^2 - 7*x^3). - Bruno Berselli, Aug 11 2016
a(n) = 7*a(n-2) + 7*a(n-3) with n>2, a(0)=3, a(1)=0, a(2)=14.

Extensions

Name and comment corrected by Colin Barker, Aug 12 2016