A275949 Number of distinct nonzero digits that occur multiple times in factorial base representation of n: a(n) = A056170(A275735(n)).
0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0
Offset: 0
Examples
For n=0, with factorial base representation (A007623) also 0, there are no nonzero digits, thus a(0) = 0. For n=2, with factorial base representation "10", there are no nonzero digits that are present multiple times, thus a(2) = 0. For n=3 ("11") there is one distinct nonzero digit which occurs more than once, thus a(3) = 1. For n=41 ("1221") there are two distinct nonzero digits ("1" and "2"), and both occur more than once, thus a(41) = 2. For n=44 ( "1310") there are two distinct nonzero digits ("1" and "3"), but only the other (1) occurs more than once, thus a(44) = 1.
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Count[Tally[Select[s, # > 0 &]][[;;, 2]], ?(# > 1 &)]]; Array[a, 100, 0] (* _Amiram Eldar, Feb 14 2024 *)
-
Python
from sympy import prime, factorint from operator import mul from functools import reduce import collections def a056170(n): f = factorint(n) return sum([1 for i in f if f[i]!=1]) def a007623(n, p=2): return n if n
-
Scheme
(define (A275949 n) (A056170 (A275735 n)))