cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.

Original entry on oeis.org

1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -968383680827, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441, -8486725345098385062639014237
Offset: 1

Views

Author

Richard P. Brent, Sep 13 2016

Keywords

Comments

-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion (t1/n + t2/n^3 + t3/n^5 + ...) where the numerators of the coefficients t1, t2, t3, ... are given by this sequence.
The sequence is different from A002425, but the first difference is at index 60 (see the text files).

Examples

			For n = 4, a(4) = numerator(-17/13336) = -17.
		

Crossrefs

Denominators are A275995.

Programs

  • Magma
    [Numerator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..20]];
    
  • Mathematica
    Table[Numerator[(1 - 4^(-n)) BernoulliB[2 n] / (n (2 n - 1))], {n, 30}] (* Vincenzo Librandi, Sep 15 2016 *)
  • PARI
    a(n) = numerator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016

Formula

a(n) = numerator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).