A275994 Numerators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
1, -1, 1, -17, 31, -691, 5461, -929569, 3202291, -221930581, 4722116521, -968383680827, 14717667114151, -2093660879252671, 86125672563201181, -129848163681107301953, 868320396104950823611, -209390615747646519456961, 14129659550745551130667441, -8486725345098385062639014237
Offset: 1
Examples
For n = 4, a(4) = numerator(-17/13336) = -17.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..275 (terms 1..64 from Richard P. Brent)
- R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016.
Crossrefs
Denominators are A275995.
Programs
-
Magma
[Numerator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..20]];
-
Mathematica
Table[Numerator[(1 - 4^(-n)) BernoulliB[2 n] / (n (2 n - 1))], {n, 30}] (* Vincenzo Librandi, Sep 15 2016 *)
-
PARI
a(n) = numerator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016
Formula
a(n) = numerator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
Comments