cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275995 Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.

Original entry on oeis.org

8, 192, 640, 14336, 18432, 180224, 425984, 15728640, 8912896, 79691776, 176160768, 3087007744, 3355443200, 28991029248, 62277025792, 4260607557632, 1133871366144, 9620726743040, 20340965113856, 343047627866112, 360639813910528, 3025855999639552, 6333186975989760, 211669182486413312
Offset: 1

Views

Author

Richard P. Brent, Sep 13 2016

Keywords

Comments

-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion
(t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.
The numerators are sequence A275994.

Examples

			For n = 4, a(4) = denominator(-17/13336) = 13336.
		

Crossrefs

Numerators are sequence A275994.

Programs

  • Magma
    [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
    
  • Mathematica
    Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* G. C. Greubel, Feb 15 2017 *)
  • PARI
    a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016

Formula

a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).