A275995 Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
8, 192, 640, 14336, 18432, 180224, 425984, 15728640, 8912896, 79691776, 176160768, 3087007744, 3355443200, 28991029248, 62277025792, 4260607557632, 1133871366144, 9620726743040, 20340965113856, 343047627866112, 360639813910528, 3025855999639552, 6333186975989760, 211669182486413312
Offset: 1
Examples
For n = 4, a(4) = denominator(-17/13336) = 13336.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500 (terms 1..64 from Richard P. Brent)
- R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016.
Crossrefs
Numerators are sequence A275994.
Programs
-
Magma
[Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
-
Mathematica
Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* G. C. Greubel, Feb 15 2017 *)
-
PARI
a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016
Formula
a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
Comments