cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276019 n^2 * a(n) = (88*n^2 - 132*n + 54) * a(n-1) - 500*(2*n-3)^2 * a(n-2), with a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 230, 6500, 199750, 6366060, 204990300, 6539387400, 202432551750, 5897526329500, 151804596385780, 2807347223915000, -15232296765302500, -5584390420089725000, -416025902106681525000, -24002385182809425846000, -1235898175219724085176250, -59486502796252242452122500, -2731496764897242177292037500, -120874274801920384164027025000, -5181210157044172846922944311500
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 10*x + 230*x^2 + 6500*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      a = vector(N); a[1] = 10; a[2] = 230;
      for (n = 3, N, a[n] = ((88*n^2 - 132*n + 54)*a[n-1] - 500*(2*n-3)^2 * a[n-2])/n^2);
      concat(1, a);
    };
    seq(20)

Formula

n^2*a(n) = (88*n^2-132*n+54)*a(n-1) - 500*(2*n-3)^2*a(n-2), with a(0)=1, a(1)=10.
0 = 4*x*(x^2+22*x+125)*y'' + (8*x^2+132*x+500)*y' + (x+10)*y, where y(x) = A(x/-500).