A276024 Number of positive subset sums of integer partitions of n.
1, 3, 7, 14, 27, 47, 81, 130, 210, 319, 492, 718, 1063, 1512, 2178, 3012, 4237, 5765, 7930, 10613, 14364, 18936, 25259, 32938, 43302, 55862, 72694, 92797, 119499, 151468, 193052, 242748, 307135, 383315, 481301, 597252, 744199, 918030, 1137607, 1395101, 1718237, 2098096, 2569047, 3121825, 3805722
Offset: 1
Keywords
Examples
The a(4)=14 positive subset sums are: {(4,4), (1,31), (3,31), (4,31), (2,22), (4,22), (1,211), (2,211), (3,211), (4,211), (1,1111), (2,1111), (3,1111), (4,1111)}.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..150
- Konstantinos Koiliaris and Chao Xu, A Faster Pseudopolynomial Time Algorithm for Subset Sum, arXiv:1507.02318 [cs.DS], 2015-2016.
- Gus Wiseman, Comcategories and Multiorders (pdf version)
Programs
-
Mathematica
sums[ptn_?OrderedQ]:=sums[ptn]=If[Length[ptn]===1,ptn,Module[{pri,sms}, pri=Union[Table[Delete[ptn,i],{i,Length[ptn]}]]; sms=Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@pri; Union@@sms ]]; Table[Total[Length[sums[Sort[#]]]&/@IntegerPartitions[n]],{n,1,25}] (* Second program: *) b[n_, i_, s_] := b[n, i, s] = If[n == 0, Length[s], If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[n - i, i], {#, # + i}& /@ s // Flatten // Union]]]; a[n_] := b[n, n, {0}] - PartitionsP[n]; Array[a, 45] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz in A304792 *)
-
Python
# uses A304792_T from sympy import npartitions def A276024(n): return A304792_T(n,n,(0,),1) - npartitions(n) # Chai Wah Wu, Sep 25 2023
Comments