cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276024 Number of positive subset sums of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 14, 27, 47, 81, 130, 210, 319, 492, 718, 1063, 1512, 2178, 3012, 4237, 5765, 7930, 10613, 14364, 18936, 25259, 32938, 43302, 55862, 72694, 92797, 119499, 151468, 193052, 242748, 307135, 383315, 481301, 597252, 744199, 918030, 1137607, 1395101, 1718237, 2098096, 2569047, 3121825, 3805722
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2016

Keywords

Comments

For a multiset p of positive integers summing to n, a pair (t,p) is defined to be a positive subset sum if there exists a nonempty submultiset of p summing to t. Positive integers with positive subset sums form a multiorder. This sequence is dominated by A122768 (submultisets of integer partitions of n).

Examples

			The a(4)=14 positive subset sums are: {(4,4), (1,31), (3,31), (4,31), (2,22), (4,22), (1,211), (2,211), (3,211), (4,211), (1,1111), (2,1111), (3,1111), (4,1111)}.
		

Crossrefs

Programs

  • Mathematica
    sums[ptn_?OrderedQ]:=sums[ptn]=If[Length[ptn]===1,ptn,Module[{pri,sms},
    pri=Union[Table[Delete[ptn,i],{i,Length[ptn]}]];
    sms=Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@pri;
    Union@@sms
    ]];
    Table[Total[Length[sums[Sort[#]]]&/@IntegerPartitions[n]],{n,1,25}]
    (* Second program: *)
    b[n_, i_, s_] := b[n, i, s] = If[n == 0, Length[s], If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[n - i, i], {#, # + i}& /@ s // Flatten // Union]]];
    a[n_] := b[n, n, {0}] - PartitionsP[n];
    Array[a, 45] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz in A304792 *)
  • Python
    # uses A304792_T
    from sympy import npartitions
    def A276024(n): return A304792_T(n,n,(0,),1) - npartitions(n) # Chai Wah Wu, Sep 25 2023