cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276026 a(n) = Sum_{k=0..7} (n + k)^2.

Original entry on oeis.org

140, 204, 284, 380, 492, 620, 764, 924, 1100, 1292, 1500, 1724, 1964, 2220, 2492, 2780, 3084, 3404, 3740, 4092, 4460, 4844, 5244, 5660, 6092, 6540, 7004, 7484, 7980, 8492, 9020, 9564, 10124, 10700, 11292, 11900, 12524, 13164, 13820, 14492, 15180, 15884, 16604, 17340, 18092, 18860, 19644, 20444, 21260, 22092, 22940
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 16 2016

Keywords

Comments

Sums of eight consecutive squares.
More generally, the ordinary generating function for the sums of m consecutive squares of nonnegative integers is m*(1 - 2*x + 13*x^2 + 2*m^2 (1 - 2*x + x^2) - 3*m*(1 - 4*x + 3*x^2))/(6*(1 - x)^3).

Examples

			a(0) = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 = 140;
a(1) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 = 204;
a(2) = 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 = 284, etc.
		

Crossrefs

Programs

  • Magma
    [4*(2*n^2 +14*n +35): n in [0..60]]; // G. C. Greubel, Aug 24 2022
    
  • Mathematica
    Table[8 n^2 + 56 n + 140, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {140, 204, 284}, 51]
  • PARI
    a(n)=8*n^2+56*n+140 \\ Charles R Greathouse IV, Jun 17 2017
    
  • SageMath
    [4*(2*n^2 +14*n +35) for n in (0..60)] # G. C. Greubel, Aug 24 2022

Formula

O.g.f.: 4*(35 - 54*x + 23*x^2)/(1 - x)^3.
E.g.f.: 4*(35 + 16*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(-n) = a(n-7).
a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2 + (n+6)^2 + (n+7)^2.
a(n) = 8*n^2 + 56*n + 140.
Sum_{n>=0} 1/a(n) = tanh(sqrt(21)*Pi/2)*Pi/(8*sqrt(21)) - 763/15180. - Amiram Eldar, Sep 15 2022