A276029 Number of ways to transform a sequence of n ones and n twos to a single number by continually removing two numbers and replacing them with their sum modulo 3.
1, 4, 27, 228, 2226, 23778, 270693, 3229106, 39922172, 507680620, 6604676830, 87549425068, 1178880306174, 16086844260290, 222045139578443, 3095457073064120, 43529719213465854, 616853383573066504, 8801227720060618544, 126344910516550743232
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..800
Programs
-
Maple
b:= proc(x, y, z) option remember; `if`(x+y+z=1, 1, `if`(y>0 and z>0, b(x+1, y-1, z-1), 0)+ `if`(x>1 or x>0 and y>0 or x>0 and z>0, b(x-1, y, z), 0)+ `if`(y>1, b(x, y-2, z+1), 0)+`if`(z>1, b(x, y+1, z-2), 0)) end: a:= n-> b(0, n, n): seq(a(n), n=1..35); # Alois P. Heinz, Aug 18 2016
-
Mathematica
b[x_, y_, z_] := b[x, y, z] = If[x + y + z == 1, 1, If[y > 0 && z > 0, b[x + 1, y - 1, z - 1], 0] + If[x > 1 || x > 0 && y > 0 || x > 0 && z > 0, b[x - 1, y, z], 0] + If[y > 1, b[x, y - 2, z + 1], 0] + If[z > 1, b[x, y + 1, z - 2], 0]]; a[n_] := b[0, n, n]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
Formula
a(n) = b(0, n, n) where f(a, b, c) is the number of ways to reach one number beginning with a zeros, b ones, and c twos.
Then f(a, b, c) = f_1 + f_2 + f_3 + f_4 where f_1 = f(a-1, b, c) if a>=2 or a, b >=1 or a,c >=1, f_2 = f(a, b-2, c+1) if b >= 2, f_3 = f(a, b+1, c-2) if c >= 2, and f_4 = f(a+1, b-1, c-1) if b, c >= 1, and each are 0 otherwise. Initial terms: f(a, b, c) = 1 for all 1 <= a+b+c <= 2, where a, b, c >= 0.
Extensions
More terms from Alois P. Heinz, Aug 18 2016
Comments