A276031 Number of edges in the graded poset of the partitions of n taken modulo 3, where a partition into k parts is joined to a partition into k+1 parts if the latter is a refinement of the former.
0, 1, 2, 5, 9, 14, 21, 30, 41, 54, 70, 89, 110, 135, 164, 195, 231, 272, 315, 364, 419, 476, 540, 611, 684, 765, 854, 945, 1045, 1154, 1265, 1386, 1517, 1650, 1794, 1949, 2106, 2275, 2456, 2639, 2835, 3044, 3255, 3480, 3719, 3960, 4216, 4487, 4760, 5049, 5354
Offset: 1
Keywords
Examples
a(6) = 14, the 14 edges are: (111111) - (21111), (21111) - (1110), (21111) - (2211), (1110) - (111), (1110) - (210), (2211) - (111), (2211) - (210), (2211) - (222), (210) - (00), (210) - (21), (111) - (21), (222) - (21), (00) - (0), (21) - (0).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Formula
G.f.: (x^6-2*x^5+x^4-x^3+2*x^2+1)*x^2/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Aug 27 2016
Extensions
More terms from Alois P. Heinz, Aug 27 2016