A276044 Least k such that phi(k) has exactly n divisors.
1, 3, 5, 7, 17, 13, 85, 31, 37, 65, 1285, 61, 4369, 193, 185, 143, 65537, 181, 327685, 241, 577, 3281, 5570645, 403, 1297, 12289, 1057, 1037, 286331153, 779, 1431655765, 899, 9509, 197633, 5629, 1333, 137438953472, 786433, 42653, 1763, 2199023255552, 2993, 8796093022208, 15361, 3737, 12648641
Offset: 1
Keywords
Examples
a(5) = 17 because phi(17) = 16 has 5 positive divisors.
Links
- David A. Corneth, Table of n, a(n) for n = 1..512
Programs
-
Mathematica
Table[k = 1; While[DivisorSigma[0, #] &@ EulerPhi@ k != n, k++]; k, {n, 28}] (* Michael De Vlieger, Aug 21 2016 *)
-
PARI
a(n) = {my(k = 1); while(numdiv(eulerphi(k)) != n, k++); k; }
Formula
a(p) = 2^p for primes p with 32 < p <= 2^33. - Pjotr Buys, Sep 18 2019
Extensions
a(31)-a(36) from Michel Marcus and Jon E. Schoenfield, Nov 13 2016
a(37)-a(46) from Pjotr Buys, Sep 18 2019
Comments