cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276071 n^3 followed by n^2 followed by n^4 followed by n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 8, 4, 16, 2, 27, 9, 81, 3, 64, 16, 256, 4, 125, 25, 625, 5, 216, 36, 1296, 6, 343, 49, 2401, 7, 512, 64, 4096, 8, 729, 81, 6561, 9, 1000, 100, 10000, 10, 1331, 121, 14641, 11, 1728, 144, 20736, 12, 2197, 169, 28561, 13, 2744, 196, 38416, 14, 3375, 225, 50625, 15
Offset: 0

Views

Author

Luce ETIENNE, Aug 18 2016

Keywords

Examples

			Rectangular array with four columns begins:
.   0,  0,    0, 0;
.   1,  1,    1, 1;
.   8,  4,   16, 2;
.  27,  9,   81, 3;
.  64, 16,  256, 4;
. 125, 25,  625, 5;
. 216, 36, 1296, 6; ...
		

Crossrefs

Cf. A110009.

Programs

  • Magma
    &cat[[n^3,n^2,n^4,n]: n in [0..20]]; // Bruno Berselli, Aug 21 2016
  • Mathematica
    Flatten[Table[{n^3, n^2, n^4, n}, {n, 0, 20}]] (* Bruno Berselli, Aug 21 2016 *)
  • PARI
    concat(vector(4), Vec(x^4*(1+x+x^2+x^3+3*x^4-x^5+11*x^6-3*x^7-3*x^8-x^9+11*x^10+3*x^11-x^12+x^13+x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^60))) \\ Colin Barker, Aug 18 2016
    

Formula

a(n) = (2*n - 3 + (-1)^n + 2*(-1)^((2*n - 1 + (-1)^n)/4))*(n^3 - 2*n^2 + 28*n + 40 + (n^3 - 2*n^2 - 4*n - 56)*(-1)^n - (n^3 - 10*n^2 - 4*n + 72)*(-1)^((2*n - 1 + (-1)^n)/4) - (n^3 - 10*n^2 + 28*n - 88)*(-1)^((2*n + 1 - (-1)^n)/4))/2048.
G.f.: x^4*(1 + x + x^2 + x^3 + 3*x^4 - x^5 + 11*x^6 - 3*x^7 - 3*x^8 - x^9 + 11*x^10 + 3*x^11 - x^12 + x^13 + x^14 - x^15)/((1 - x)^5*(1 + x)^5*(1 + x^2)^5). - Colin Barker, Aug 18 2016