A276071 n^3 followed by n^2 followed by n^4 followed by n.
0, 0, 0, 0, 1, 1, 1, 1, 8, 4, 16, 2, 27, 9, 81, 3, 64, 16, 256, 4, 125, 25, 625, 5, 216, 36, 1296, 6, 343, 49, 2401, 7, 512, 64, 4096, 8, 729, 81, 6561, 9, 1000, 100, 10000, 10, 1331, 121, 14641, 11, 1728, 144, 20736, 12, 2197, 169, 28561, 13, 2744, 196, 38416, 14, 3375, 225, 50625, 15
Offset: 0
Examples
Rectangular array with four columns begins: . 0, 0, 0, 0; . 1, 1, 1, 1; . 8, 4, 16, 2; . 27, 9, 81, 3; . 64, 16, 256, 4; . 125, 25, 625, 5; . 216, 36, 1296, 6; ...
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1).
Crossrefs
Cf. A110009.
Programs
-
Magma
&cat[[n^3,n^2,n^4,n]: n in [0..20]]; // Bruno Berselli, Aug 21 2016
-
Mathematica
Flatten[Table[{n^3, n^2, n^4, n}, {n, 0, 20}]] (* Bruno Berselli, Aug 21 2016 *)
-
PARI
concat(vector(4), Vec(x^4*(1+x+x^2+x^3+3*x^4-x^5+11*x^6-3*x^7-3*x^8-x^9+11*x^10+3*x^11-x^12+x^13+x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^60))) \\ Colin Barker, Aug 18 2016
Formula
a(n) = (2*n - 3 + (-1)^n + 2*(-1)^((2*n - 1 + (-1)^n)/4))*(n^3 - 2*n^2 + 28*n + 40 + (n^3 - 2*n^2 - 4*n - 56)*(-1)^n - (n^3 - 10*n^2 - 4*n + 72)*(-1)^((2*n - 1 + (-1)^n)/4) - (n^3 - 10*n^2 + 28*n - 88)*(-1)^((2*n + 1 - (-1)^n)/4))/2048.
G.f.: x^4*(1 + x + x^2 + x^3 + 3*x^4 - x^5 + 11*x^6 - 3*x^7 - 3*x^8 - x^9 + 11*x^10 + 3*x^11 - x^12 + x^13 + x^14 - x^15)/((1 - x)^5*(1 + x)^5*(1 + x^2)^5). - Colin Barker, Aug 18 2016