cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276101 a(n) = (10*n)!*(n/3)!/((5*n)!*(10*n/3)!*(2*n)!).

Original entry on oeis.org

1, 1458, 9723402, 77636318760, 665145965903562, 5915482311008318958, 53837289804317953893960, 497704257299202369371725086, 4653371135224869009103021872330, 43880754270176401422739454033276880
Offset: 0

Views

Author

Peter Bala, Aug 22 2016

Keywords

Comments

Fractional factorials are defined in terms of the gamma function, for example, (n/3)! := gamma(n/3 + 1).
This is only conjecturally an integer sequence. The similarly defined sequence (10*n)!*floor(n/3)!/((5*n)!*floor(10*n/3)!*(2*n)!) = A211418(10*n) is integral.
Let u(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!) = A211417(n). The three sequences u(1/2*n), u(1/3*n) and u(1/5*n) appear to be integral (checked up to n = 200). This is the sequence u(1/3*n). See A276100 ( u(1/2*n) ) and A276102 ( u(1/5*n) ).
The generating function for u(n) is Hypergeom([29/30, 23/30, 19/30, 17/30, 13/30, 11/30, 7/30, 1/30], [4/5, 3/5, 2/5, 1/5, 2/3, 1/3, 1/2], (2^14*3^9*5^5)*x) and is known to be algebraic. Are the generating functions for u(1/2*n), u(1/3*n) and u(1/5*n) also algebraic?

Crossrefs

Programs

  • Maple
    A211417 := proc(n)
    (30*n)!*(n)!/((15*n)!(10*n)!(6*n)!);
    end proc:
    seq(simplify(A211417(1/3*n)), n = 0..10);
  • Mathematica
    Table[(10*n)!*(n/3)!/((5*n)!*(10*n/3)!*(2*n)!) // FullSimplify, {n, 0, 9}] (* Jean-François Alcover, Nov 27 2017 *)

Formula

O.g.f. A(x) = Hypergeom([29/30, 23/30, 19/30, 17/30, 13/30, 11/30, 7/30, 1/30], [4/5, 3/5, 2/5, 1/5, 2/3, 1/3, 1/2], (2^14*3^9*5^5)*x^3) + 1458*x*Hypergeom([29/30, 23/30, 17/30, 11/30, 13/10, 11/10, 9/10, 7/10], [17/15, 14/15, 11/15, 8/15, 5/6, 4/3, 2/3], (2^14*3^9*5^5)*x^3) + 9723402*x^2*Hypergeom([ 49/30, 43/30, 37/30, 31/30, 13/10, 11/10, 9/10, 7/10], [22/15, 19/15, 16/15, 13/15, 7/6, 5/3, 4/3],(2^14*3^9*5^5)*x^3).
a(n) ~ (2^14*3^9*5^5)^(n/3)/(sqrt(20*Pi*n)).