A276112 Numbers with precipice 1: descending by the main diagonal of the pyramid described in A245092, the height difference between the level a(n) (starting from the top) and the level of the next terrace is equal to 1.
1, 3, 5, 7, 8, 11, 14, 15, 17, 19, 23, 24, 27, 29, 31, 34, 35, 39, 41, 44, 47, 48, 49, 53, 55, 59, 62, 63, 65, 69, 71, 76, 79, 80, 83, 87, 89, 90, 95, 97, 98, 99, 103, 107, 109, 111, 116, 119, 120, 125, 127, 129, 131, 134, 139, 142, 143, 149, 152, 153, 155, 159
Offset: 1
Keywords
Examples
From _Hartmut F. W. Hoft_, Feb 02 2022: (Start) n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 index. A282131: 1 2 3 5 6 7 9 11 12 13 15 17 18 20 position on diagonal. A276112: 1 3 5 7 8 11 14 15 17 19 23 24 27 29 max index of Dyck path. A280919: 1 2 2 2 1 3 3 1 2 2 4 1 3 2 paths at diag position. (End)
Links
Crossrefs
Programs
-
Mathematica
(* last computed value of a280919[ ] is dropped to avoid a potential undercount of crossings *) a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}] a280919[n_] := Most[Map[Length, Split[Map[a240542, Range[n]]]]] A276112[160] (* Hartmut F. W. Hoft, Feb 02 2022 *)
Formula
a(n) = A071562(n+1) - 1.
a(n) = Sum_{i=1..n} A280919(i), n >= 1. - Hartmut F. W. Hoft, Feb 02 2022
Comments