A276121 Smallest odd integer k such that k*2^prime(n)-1 is a prime number.
1, 1, 1, 1, 3, 1, 1, 1, 13, 7, 1, 21, 15, 3, 31, 147, 45, 1, 43, 73, 15, 69, 91, 1, 51, 81, 3, 1, 9, 85, 1, 55, 169, 225, 109, 145, 15, 103, 615, 69, 259, 69, 63, 45, 285, 471, 9, 255, 169, 489, 69, 273, 427, 43, 391, 169, 201, 21, 159, 181, 103, 15, 339
Offset: 1
Keywords
Examples
1*2^7-1 = 127 prime so a(4) = 1 as prime(4)=7. 1*2^11-1 = 2047 composite, 3*2^11-1 = 6143 prime so a(5) = 3 as prime(5)=11.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..3000
Programs
-
Mathematica
Table[k = 1; While[! PrimeQ[k 2^Prime@ n - 1], k += 2]; k, {n, 63}] (* Michael De Vlieger, Aug 21 2016 *)
-
PARI
a(n) = {my(k=1); while (!isprime(k*2^prime(n)-1), k+=2); k;} \\ Michel Marcus, Aug 21 2016
Formula
a(n) = A126717(prime(n)). - Michel Marcus, Sep 07 2016
Comments