A276129 a(n) is the number of ordered ways to tile a strip of length n+2 with white tiles of odd lengths summing to length n and two red squares.
1, 3, 6, 13, 27, 54, 106, 204, 387, 725, 1344, 2469, 4500, 8145, 14652, 26213, 46665, 82704, 145982, 256722, 449937, 786109, 1369494, 2379447, 4123944, 7130895, 12303714, 21186013, 36411399, 62466906, 106987282, 182946888, 312367887, 532587461, 906840060
Offset: 0
Keywords
Examples
Let 1,3 be the lengths of the odd tiles summing to 3 and let r,r be the two odd squares. Then the resulting number of compositions is a(3) = 13. The 6 compositions are 3,r,r; r,3,r; r,r,3; 1,1,1,r,r; 1,1,r,r,1; 1,r,r,1,1; r,r,1,1,1; 1,1,r,1,r; 1,r,1,r,1; r,1,r,1,1; r,1,1,r,1; 1,r,1,1,r; r,1,1,1,r.
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n+m=0, 1, `if`(m>0, b(n, m-1), 0)+ add(`if`(j::odd, b(n-j, m), 0), j=1..n)) end: a:= n-> b(n, 2): seq(a(n), n=0..50); # Alois P. Heinz, Aug 29 2016
-
Mathematica
a[0] = 1; a[n_] := Sum[Binomial[n - 2*k + 2, 2]*Binomial[n - k - 1, k], {k, 0, (n - 1)/2}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
-
PARI
a(n)={if(n<=0, n==0, sum(k=0, (n-1)\2, binomial(n-2*k+2, 2)*binomial(n-k-1, k)))} \\ Andrew Howroyd, Dec 26 2017
Formula
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-2*k+2, 2)*binomial(n-k-1, k) for n > 0. - Andrew Howroyd, Dec 26 2017
b(0,0)=1. For n>=1, b(0,n) = b(0,0,n) = the n-th Fibonacci number, A000045(n).
b(1,0)=1. For n>=1, b(1,n) = A239342(n+1).
G.f. for b(2,n): ((1-x^2)/(1-x-x^2))^3.
G.f. for b(r,n): ((1-x^2)/(1-x-x^2))^(r+1).
b(1,1,n) = A029907(n+1).
b(r,n) = b(r, n-1) + b(r, n-2) + b(r-1, n) - b(r-1, n-2).
b(r,r,n) = b(r-1, r-1, n) + b(r, r, n-1) + b(r, r, n-2).
G.f. for b(r,r,n): (1-x^2)/((1-x-x^2)^(r+1)).
Extensions
More terms from Alois P. Heinz, Aug 29 2016
Comments