cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276133 Exponent of highest power of 2 dividing the product of the composite numbers between the n-th prime and the (n+1)-st prime.

Original entry on oeis.org

0, 2, 1, 4, 2, 5, 1, 3, 6, 1, 8, 4, 1, 3, 7, 5, 2, 8, 3, 3, 4, 5, 6, 9, 3, 1, 4, 2, 5, 11, 8, 6, 1, 10, 1, 6, 7, 3, 6, 6, 2, 8, 6, 3, 1, 12, 10, 6, 2, 4, 4, 4, 8, 11, 4, 6, 1, 7, 4, 1, 11, 13, 3, 3, 3, 15, 7, 8, 2, 6, 4, 7, 7, 5, 3, 10, 7, 5, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2016

Keywords

Crossrefs

Supersequence of A205649 (Hamming distance between twin primes).
First differences of A080085.

Programs

  • Maple
    A:= Vector(100): q:= 2:
    for n from 1 to 100 do
      p:= q; q:= nextprime(q);
      t:= 0;
      for i from p+1 to q-1 do t:= t + padic:-ordp(i,2) od;
      A[n]:= t
    od:
    convert(A,list); # Robert Israel, Apr 11 2021
  • Mathematica
    IntegerExponent[#,2]&/@(Times@@Range[#[[1]]+1,#[[2]]-1]&/@Partition[ Prime[ Range[ 80]],2,1]) (* Harvey P. Dale, Aug 12 2024 *)
  • PARI
    a(n) = valuation(prod(k=prime(n)+1, prime(n+1)-1, k), 2); \\ Michel Marcus, Aug 31 2016
    
  • PARI
    a(n) = my(p=prime(n+1),q=prime(n)); p-hammingweight(p) - (q-hammingweight(q)); \\ Kevin Ryde, Apr 11 2021
    
  • Python
    from sympy import prime
    def A276133(n): return (p:=prime(n+1)-1)-p.bit_count()-(q:=prime(n))+q.bit_count() # Chai Wah Wu, Jul 10 2022

Formula

a(n) = A007814(A061214(n)).
a(n+1) = Sum_{k = A000040(n+1)..A000040(n+2)} A007814(k).

Extensions

a(16) corrected by Robert Israel, Apr 11 2021