A276133 Exponent of highest power of 2 dividing the product of the composite numbers between the n-th prime and the (n+1)-st prime.
0, 2, 1, 4, 2, 5, 1, 3, 6, 1, 8, 4, 1, 3, 7, 5, 2, 8, 3, 3, 4, 5, 6, 9, 3, 1, 4, 2, 5, 11, 8, 6, 1, 10, 1, 6, 7, 3, 6, 6, 2, 8, 6, 3, 1, 12, 10, 6, 2, 4, 4, 4, 8, 11, 4, 6, 1, 7, 4, 1, 11, 13, 3, 3, 3, 15, 7, 8, 2, 6, 4, 7, 7, 5, 3, 10, 7, 5, 7
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A:= Vector(100): q:= 2: for n from 1 to 100 do p:= q; q:= nextprime(q); t:= 0; for i from p+1 to q-1 do t:= t + padic:-ordp(i,2) od; A[n]:= t od: convert(A,list); # Robert Israel, Apr 11 2021
-
Mathematica
IntegerExponent[#,2]&/@(Times@@Range[#[[1]]+1,#[[2]]-1]&/@Partition[ Prime[ Range[ 80]],2,1]) (* Harvey P. Dale, Aug 12 2024 *)
-
PARI
a(n) = valuation(prod(k=prime(n)+1, prime(n+1)-1, k), 2); \\ Michel Marcus, Aug 31 2016
-
PARI
a(n) = my(p=prime(n+1),q=prime(n)); p-hammingweight(p) - (q-hammingweight(q)); \\ Kevin Ryde, Apr 11 2021
-
Python
from sympy import prime def A276133(n): return (p:=prime(n+1)-1)-p.bit_count()-(q:=prime(n))+q.bit_count() # Chai Wah Wu, Jul 10 2022
Extensions
a(16) corrected by Robert Israel, Apr 11 2021